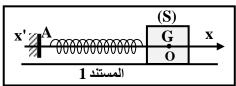
دورة العام ٢٠٢١ العاديّة الاثنين ٢٦ تموز ٢٠٢١

امتحانات الشهادة الثانوية العامة فرع علوم الحياة

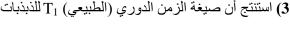

وزارة التربية والتعليم العالى المديرية العامة للتربية دائرة الامتحانات الرسمية

مسابقة في مادة الفيزياء الاسم: الرقم: المدة: ساعة ونصف

يتكون هذا الاختبار من ثلاث تمارين إجبارية في ثلاث صفحات. يوصى باستخدام الآله الحاسبة غير القابلة للبرمجة.

متذبذب (هزاز) میکانیکی

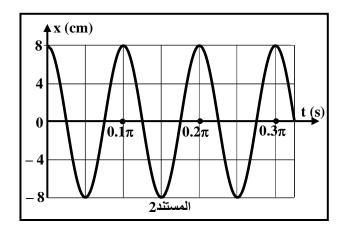
التمرين 1 (7 علامات)



يتكون متذبذب ميكانيكي من جسم (S) كتلته M وزنبرك (نابض) ذو كتلة مهملة وثابت قوة k. وضع الزنبرك أفقيًا متصلاً من أحد أطرافه إلى دعامة ثابتة S). A متصل بالطرف الآخر من الزنبرك وقد يستطيع الانزلاق بدون احتكاك على سطح أفقى (مستند 1). الهدف من هذا التمرين هو إيجاد قيم M و k عند الاتزان ، مركز الكتلة G للجسم (S) موجودة عند نقطة الاصل O

للمحور x. يتم إزاحة (S) من موضع اتزانه في الاتجاه الموجب ثم يتم تحريره بدون سرعة ابتدائية عند اللحظة $t_0=0$. وبالتالي (S) ينفذ $v=x'=rac{dx}{t}$ دبذبات ميكانيكية. عند اللحظة t, يكون موقع مركز الكتلة t هو t والقيمة الجبرية لسرعته هي t

يعتبر المستوى الأفقى الذي يحتوى على G مستوى مرجعيًا لطاقة وضع الجاذبية.


- 1) اكتب، عند اللحظة t ، صيغة الطاقة الميكانيكية ME للنظام [المتذبذب ، الأرض] بدلالة x و M و k و v .
 - . G أنشئ المعادلة التفاضلية من الدرجة الثانية للمتغير X التي تحكم حركة G
 - $T_1 = 2\pi \sqrt{rac{M}{k}}$ استنتج أن صيغة الزمن الدوري (الطبيعي) الطبيعي (3

4) جهاز مناسب يتتبع x كدالة للوقت (المستند 2).

بالعودة للمستند 2. استخرج:

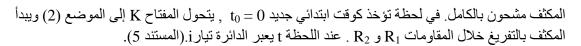
- 4.1) نوع تذبذب G
- 4.2) سعة الذبذبات
 - **4.2)** قيمة 1₁.
- دكرر نفس التجربة بوضع جسيم كتلته m = 50g على (S).
 - $\Delta t = 3.67 \text{ s}$ مدة 10 اهتزازات هي
- M , M و M , M و M , M الخديدة M للذبذبات بدلالة M و M , M و M , M
 - ${
 m k}=rac{4\,\pi^2\,m}{{
 m T}^2\,-\,{
 m T}^2}$ باستعمال صیغ ${
 m T}_1$ و ${
 m T}_1$ أثبت أن (5.2)
 - 5.3) أو جد قيم k و M.

شحن وتفريغ مكثف

التمرين 2 (7علامات)

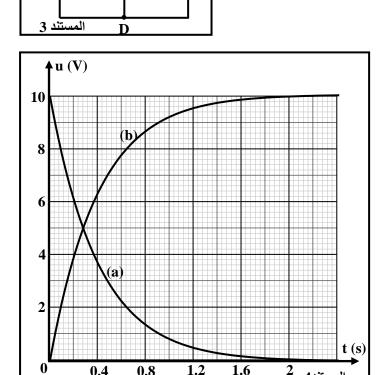
الهدف من هذا التمرين هو دراسة شحن وتفريغ مكثف. لهذا الهدف، قمنا بإعداد دائرة المستند 3. التي

- بطارية مثالية لها قوة دافعة كهربائية E = 10V
 - $R_1 = R_2 = 4 \text{ k } \Omega$ مقاومتان
 - مكثف سعته C.
 - مفتاح (قاطع مزدوج)K.

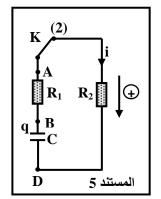

مبدئيًا يكون المفتاح K في الموضع (0) والمكثف غير مشحون. في اللحظة $t_0=0$ ، يتحول t_0 إلى الموضع (1) وتبدأ عملية شحن المكثف.

عند اللحظة t ، يحمل اللوح B للمكثف شحنة q ويعبر الدائرة تيار i.

يسمح لنا جهاز مناسب بعرض فرق الجهد $u_{AB} = u_{AB}$ حول اطراف المقاوم وفرق الجهد $u_{C}=u_{BD}$ حول اطراف المكثف. يوضح المنحنيان (a) و (b) في المستند 4 هذه الجهود كدالة بالزمن.


- 1.1) برر لماذا يمثل المنحنى (a) فرق الجهد u_{R1} و المنحنى (b) فرق الجهد uc.
 - $au_1 = R_1 \ C$ ليكن ثابت الزمن للدائرة هو (1.2
 - راد.1.) باستخدام المستند 4, أوجد قيمة τ_1 .
 - 1.2.2) استنتج قيمة C.
- احسب الزمن $t_1 \gg t_1$ اللازم ليصبح المكثف عملياً مشحوناً تماماً.

2) تفريغ المكثف



2.1) بر هن، باستخدام قانون جمع الجهود، أن المعادلة التفاضلية التي تحكم uc هي:

.
$$R=R_1+R_2$$
 حیث اُن $RC \frac{du_C}{dt} + u_C = 0$

(1)(0)(2)

.C و R عيث أن t_2 عيث أن t_2 عيث أن t_2 هو ثابت الزمن للدائرة في المستند t_2 أوجد صيغة ثابت الزمن t_2 بدلالة t_3 و .

المستند4

- $t_2 = 5$ تحقق من أن الوقت اللازم للمكثف حتى يصبح عمليًا فار غاً تماماً هو $t_2 = 5$.
 - 3) مدة شحن وتفريغ المكثف.

برهن، بدون حساب، أن $t_2 \gg 1$ أكبر من $t_1 \gg 1$

خصائص ملف کهربائی

التمرين 3 (6علامات)

من أجل ايجاد قيمة ثابت الحث الذاتي L والمقاومة r لملف، نقوم بتوصيله على التوالي بمقاوم مقاومته $R=30~\Omega$ حول اطراف مولد كهربائي (G) يغذي الدائرة بفرق جهد (توتر) جيبي متناوب بتردد زاوي ω .

وبالتالي تحمل الدائرة تيارًا جيبيًا متناوبًا صيغته

.(6المستند) $i = I_m \sin(\omega t)$

يسمح راسم الذبذبات بعرض فرق الجهد $u_R=u_{AB}$ على اطراف المقاوم وفرق الجهد $u_{BC}=u_{AB}$ على اطراف الملف. في المستند 7 تظهر الأشكال الموجية التي تم الحصول عليها.

تم ضبط راسم الذبذبات على:

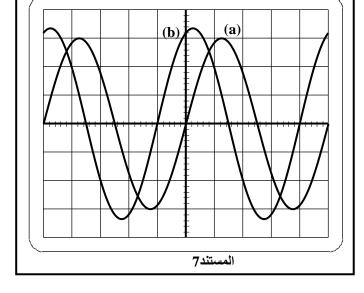
. $S_v = 2 \text{ V/div}$ الحساسية العمودية للقناتين

. $S_h = 0.4 \; ms/div$ • الحساسية الأفقية

ل يمثل فرق الجهد u_R صورة للتيار i لماذا؟

2) بالعودة إلى المستند 7، حدد أي من المنحنيات، (a) أو (b) ، يسبق الآخر.

. \mathbf{u}_{AB} استنتج أن المنحنى (a) يمثل (3


4) باستخدام المستند 7، اوجد:

التردد الزاوي ω .

 $_{i}$ القيمة العظمى $_{m}$ للتيار الكهربائى $_{i}$

i و u, بين μ و i.

اثبت أن ($u_{\rm L}=6.8\,\sin(\omega t+0.4\pi)$). (بالوحدات الدولية)

ر علمنا أن فرق الجهد على اطراف الملف يعطى بالمعادلة التالية $\frac{\mathrm{d}i}{\mathrm{d}t}$ اذا علمنا أن فرق الجهد على اطراف الملف يعطى بالمعادلة التالية $\mathrm{d}t$

ر على المتخدام صيغتى u_L اللتين حصلت عليهما في الجزأين 5 و6 وبإعطاء « u_L فيمتين معينتين، أوجد قيمتى u_L و u_L