امتحانات الشهادة الثانوية العامة فرع: علوم الحياة

وزارة التربية والتعليم العالي المديريّة العامّة للتربية دائرة الامتحانات الرسميّة

الاسم:	مسابقة في مادة الرياضيات	
الرقم:	المدة: ساعة ونصف	

ملاحظة: - يتكون هذا الامتحان من ست مسائل، يجب اختيار أربع مسائل منها فقط.

- في حال الإجابة عن أكثر من أربع مسائل، عليك شطب الإجابات المتعلّقة بالمسألة التي لم تعد من ضمن اختيارك، لأنّ التصحيح سيقتصر على إجابات المسائل الأربع الأولى غير المشطوبة.
 - يسمح باستعمال آلة حاسبة غير قابلة للبرمجة او اختزان المعلومات او رسم البيانات.
 - يستطيع المرشّح الإجابة بالترتيب الذي يناسبه (دون الالتزام بترتيب المسائل الواردة في المسابقة).

I- QCM (5 points)

Dans le tableau suivant, une seule des réponses proposées à chaque question est correcte.

Ecrire le numéro de chaque question et donner, en justifiant, la réponse qui lui correspond.

No	Questions	Réponses proposées		
14.	Questions	a	b	c
1	$\lim_{x \to -\infty} \frac{e^x + 2}{e^x + 1} =$	+∞	1	2
2	Le domaine de définition de la fonction f donnée par $f(x) = \frac{\ln(x-4)}{x-5}$ est]0;+∞[]4;+∞[]4; 5[∪]5; +∞[
3	La dérivée de la fonction f définie sur \mathbb{R} par $f(x) = \ln (2 + e^{-x})$ est	$\frac{-1}{1+2e^x}$	$\frac{1}{2 + e^{-x}}$	−e ^{-x}
4	Une urne contient 7 boules : 4 rouges et 3 noires. On tire au hasard successivement et avec remise 4 boules de l'urne. Le nombre de tirages possibles de 3 boules rouges et une noire est	72	768	192
5	Le nombre de solutions de l'équation $(\ln x)^2 = 4\ln x$ est	0	1	2

II- Probabilité (5 points)

Dans une université, une étude sur l'utilisation des applications AI : COPILOT et GEMINI montre que :

- 60% des élèves utilisent COPILOT, parmi eux 30% utilisent GEMINI.
- 40% des élèves n'utilisent pas COPILOT, parmi eux 50% utilisent GEMINI.

Un élève est choisi au hasard de cette université.

On considère les événements suivants :

C: « L'élève choisi utilise COPILOT »

G: « L'élève choisi utilise GEMINI ».

- 1) a) Montrer que la probabilité $P(C \cap G) = 0.18$ et calculer $P(\overline{C} \cap G)$.
 - **b**) Calculer P(G).
- 2) Sachant que l'élève choisi n'utilise pas GEMINI, calculer la probabilité qu'il utilise COPILOT.
- 3) Calculer $P(C \cup G)$.
- 4) Le nombre des élèves de cette université est 400.
 - a) Montrer que le nombre d'élèves qui utilisent COPILOT et GEMINI est 72.
 - **b**) On choisit au hasard et simultanément 4 élèves. Calculer la probabilité qu'un élève exactement parmi les 4, utilise COPILOT et GEMINI.

III- Probabilité (5 points)

U et V sont deux urnes:

- U contient 3 boules rouges et 2 boules noires.
- V contient 3 boules rouges et 3 boules noires.

On choisit au hasard une des deux urnes puis de l'urne choisie on tire au hasard et simultanément 3 boules. On considère les événements suivants :

U: « L'urne choisie est U »

R: « Les trois boules tirées sont rouges ».

- 1) a) Calculer la probabilité P(R / U) et déduire que $P(R \cap U) = \frac{1}{20}$.
 - **b**) Calculer $P(R \cap \overline{U})$ et montrer que P(R) = 0.075.
- 2) Sachant que les trois boules tirées ne sont pas rouges, calculer la probabilité qu'elles soient tirées de l'urne U.
- 3) On place les boules des deux urnes U et V dans une même urne W puis on tire de W au hasard successivement et sans remise 3 boules.
 - a) Vérifier que le nombre total de cas possibles est 990.
 - b) Calculer la probabilité d'avoir au moins une boule rouge parmi les trois boules tirées.

IV- Fonctions (5 points)

On considère la fonction f définie sur \mathbb{R} par $f(x) = (-x - 2)e^{-x} + 2$ et on désigne par (C) sa courbe représentative dans un repère orthonormé (O; \vec{i} , \vec{j}).

- 1) a) Déterminer $\lim_{x\to-\infty} f(x)$ et calculer f(-2,5).
 - **b**) Montrer que $\lim_{x \to +\infty} f(x) = 2$. Déduire une asymptote (d) à (C).
- 2) a) Montrer que $f'(x) = (x + 1)e^{-x}$ puis dresser le tableau de variations de f.
 - **b**) Calculer f(0) et montrer que f(x) = 0 admet, sur $] \infty$; -1[, une solution unique α .
 - c) Vérifier que $-1.6 < \alpha < -1.5$.
- 3) Calculer f(-2) puis tracer (d) et (C).
- 4) Soit g la fonction donnée par $g(x) = \ln[f(x) 2]$.
 - a) Déterminer le domaine de définition de g.
 - b) Montrer que g est strictement décroissante.

V- Fonctions (5 points)

On considère la fonction f définie sur]0; $+\infty[$ par $f(x) = \frac{\ln x}{x} + x + 1$ et on désigne par (C) sa courbe représentative dans un repère orthonormé $(O; \vec{i}, \vec{j})$.

Soit (d) la droite d'équation y = x + 1.

- 1) Déterminer $\lim_{\substack{x\to 0\\x>0}} f(x)$. Déduire une asymptote à (C).
- 2) a) Déterminer $\lim_{x\to +\infty} f(x)$.
 - **b)** Montrer que (d) est une asymptote à (C) en $+\infty$.
 - c) Etudier, suivant les valeurs de x, la position relative de (C) et (d).
- 3) Copier et compléter le tableau de variations de f suivant :

X	0	$+\infty$	
f '(x)		+	
f(x)			

- 4) a) Montrer que l'équation f(x) = 0 admet une solution unique α .
 - **b)** Vérifier que $0.4 < \alpha < 0.5$.
- **5**) Tracer (d) et (C).

VI- Fonctions Exponentielles et Intégrales (5 points)

On considère la fonction f définie sur \mathbb{R} par $f(x) = x(1 - e^{-x}) - 1$ et on désigne par (C) sa courbe représentative dans un repère orthonormé (O; \vec{i} , \vec{j}).

Soit (d) la droite d'équation y = x - 1.

- 1) Calculer f(-1,5).
- 2) a) Montrer que (d) est une asymptote à (C) en $+\infty$.
 - **b)** Etudier, suivant les valeurs de x, la position relative de (C) et (d).
- 3) Copier et compléter le tableau de variations de f suivant :

X	-∞		0		$+\infty$
f '(x)		_	0	+	
f(x)	+∞				+∞

- 4) Montrer que l'équation f(x) = 0 admet exactement deux solutions α et β tels que $-0.9 < \alpha < -0.8$ et $1.3 < \beta < 1.4$.
- 5) Tracer (d) et (C).
- 6) a) Calculer f'(x) + f(x).
 - **b)** Calculer, en fonction de α , l'aire du domaine limité par (C), l'axe des abscisses, l'axe des ordonnées et la droite d'équation $x = \alpha$.

الأسم:	مسابقة في مادة الرياضيات	عدد المسائل: ست
الرقم:	المدة: ساعة ونصف	عدد المسائل: سك

مشروع أسس التصحيح

	Q1: Réponses	7.5 pts
1	$\lim_{x \to -\infty} \frac{e^{x} + 2}{e^{x} + 1} = \frac{0 + 2}{0 + 1} = 2$ Answer: c	1.5
2	$f(x) = \frac{\ln(x-4)}{x-5} \text{ is defined for}$ $\begin{cases} x-4>0 \\ x-5\neq 0 \end{cases} \text{ so } \begin{cases} x>4 \\ x\neq 5 \end{cases} \text{ Thus, } x\in]4;5[\ \cup\]5;+\infty[$ Solution: c	1.5
3	$f'(x) = \frac{-e^{-x}}{2+e^{-x}} = \frac{-1}{2e^x+1}$ Answer: a	1.5
4	RRRB, then $4^{3} \times 3^{1} \times \frac{4!}{3!} = 768$ Answer: b	1.5
5	$\ln^2(x) = 4 \ln(x)$, then $\ln(x) (\ln(x) - 4)) = 0$, then $\ln(x) = 0$ or $\ln(x) = 4$ Then $x = 1$ or $x = e^4$ Answer: c	1.5

	Q2: Réponses	7.5 pts
1a	P(G/C) = 0.3 $P(C \cap G) = P(G/C) \times P(C) = (0.3)(0.6) = 0.18$ $P(\overline{C} \cap G) = P(G/\overline{C}) \times P(\overline{C}) = (0.5)(0.4) = 0.2$	1.5
1b	$P(G) = P(C \cap G) + P(\overline{C} \cap G) = 0.18 + 0.2 = 0.38$	0.75
2	$P(C/\overline{G}) = \frac{P(C \cap \overline{G})}{P(\overline{G})} = \frac{0.6 \times 0.7}{1 - 0.38} = \frac{21}{31}$	1.5
3	$P(C \cup G) = P(C) + P(G) - P(C \cap G) = 0.6 + 0.38 - 0.18 = 0.8$	1.5
4a	$P(C \cap G) = 0.18$ Then $N = 0.18 \times 400 = 72$	0.75
4b	P(1 out of 4 uses both AI's) = $\frac{C_{72}^1 \times C_{328}^3}{C_{400}^4} = 0.399$	1.5

	Q3: Réponses	7.5 pts
1a	$P(R/U) = \frac{C_3^3}{C_5^3} = \frac{1}{10}$ $P(R \cap U) = P(R/U) \times P(U) = \frac{1}{10} \times \frac{1}{2} = \frac{1}{20}$	1.5
1b	$P(R/V) = \frac{C_3^3}{C_6^3} = \frac{1}{20}$ $P(R \cap \overline{U}) = P(R/V) \times P(V) = \frac{1}{20} \times \frac{1}{2} = \frac{1}{40}$ $P(R) = P(R \cap U) + P(R \cap V) = P(R/U) \times P(U) + P(R/V) \times P(V) = 0.075$	2.25
2	$P(U/\overline{R}) = \frac{P(U \cap \overline{R})}{P(\overline{R})} = \frac{P(U) - P(U \cap R)}{1 - P(R)} = \frac{18}{37}$	1.5
3a	$A_{11}^3 = 990$	0.75
3b	P(at least one red) = 1 - P(none is red) = $1 - \frac{A_6^3}{A_{11}^3} = \frac{29}{33}$	1.5

	Q4: Réponses	7.55 pts
1a	$\lim_{\substack{x \to -\infty \\ f(-2,5) = 8,09}} [(-x-2)e^{-x}+2] = (+\infty)(+\infty) + 2 = +\infty$	1.5
1b	$\lim_{\substack{x \to +\infty \\ \text{Then y=2 is the equation of a horizontal asymptote to (C) at }} \lim_{\substack{x \to +\infty \\ \text{Then y=2}}} [(-x)e^{-x} - 2e^{-x} + 2] = 2$	0.75
2a	$f'(x) = -e^{-x} - (-x - 2)e^{-x} = (-1 + x + 2)e^{-x} = (x + 1)e^{-x}$ $f'(x) = -f'(x)$ $f(-1) = -e + 2$	1.5
2b	f(0)=0	0.75
2c	Since f is continuous and strictly decreasing over $]-\infty, -1[$ from $+\infty$ to $-e+2<0$ then $f(x)=0$ has a unique solution over this interval $x=0$. Since f is continuous and strictly increasing over $]-1, +\infty[$ $from -e+2<0$ to $2>0$ then $f(x)=0$ has a unique solution α .	0.5
3	$f''(x) = e^{-x} - (x+1)e^{-x} = e^{-x}(-x)$ Since f''(x) vanishes and changes sign at x=0 from positive to negative the (C) has an inflection point O(0,0)	0.75
4a	The equation of the tangent to (C) at $x=0$ is: $y=f'(0)(x-0)+f(0)=x$	0.75
4b		0.75

5	9 2 1 1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 -2 -2 -3 -3 -4 -5 -6	1.5
6a	g is defined for $f(x)>2$ that is for $x<-2$	0.5
6b	$g'(x) = \frac{f'(x)}{f(x)-2}$ For x<-2, f'(x) is negative anf f(x)-2 >0 so g'(x)<0. Thus g is always decreasing	0.5

	05 P/	<i>-</i> ,
	Q5: Réponses	5 pts
1	$\lim_{\substack{x \to 0^+ \\ (C)}} \left[\left(\frac{\ln x}{x} + x + 1 \right] \right] = \frac{-\infty}{0} + 0 + 1 = -\infty $ thus the y-axis is a vertical asymptote for	1
2a	$\lim_{x \to \infty} \left[\frac{\ln x}{x} + x + 1 \right] = 0 + +\infty + 1 = +\infty$	1
2b	$\lim_{x \to +\infty} \left[\frac{\ln x}{x} + x + 1 - x - 1 \right] = \lim_{x \to 0^+} \left[\frac{\ln x}{x} \right] = 0$ Thus, (d) is an asymptote to (C) at $+\infty$	1
2c	Since $\frac{\ln x}{x} > 0$ for $x > 1$ then (C) is above (d) for $x > 1$	1
3	$ \begin{array}{c cccc} x & 0 & +\infty \\ \hline f'(x) & + \\ \hline f(x) & \end{array} $	0.5
4a	Since f is continuous and strictly increasing over $]0, +\infty[$ from $-\infty$ to $+\infty$ then $f(x)=0$ has a unique solution ∞ .	1
4b	f(0.4)<0 and $f(0.5)>0$	0.5
5	8 -6 -4 -2 0 2 4 6 8 10 12 14 16 18 20 22 -2 -4 -6 -6 -6	1.5
	(C) and (d) intersect at (1,2)	
6a	$f(x) = 0$ then $\frac{\ln x}{x} + x + 1 = 0$ so $\ln x + x^2 + x = 0$ thus $\ln x = -x - x^2$	0.5

6b	$f(\alpha^2) = \frac{\ln(\alpha^2)}{\alpha^2} + \alpha^2 + 1 = \frac{2\ln\alpha}{\alpha^2} + \alpha^2 + 1 = \frac{2(-\alpha^2 - \alpha)}{\alpha^2} + \alpha^2 + 1 = -2 - \frac{2}{\alpha} + \alpha^2 + 1$ $f(\alpha^2) - \alpha^2 = -1 - \frac{2}{\alpha} < 0$	0.5
----	--	-----

	Q6: Réponses	5 pts
1	$\lim_{x \to -\infty} [x(1 - e^{-x}) - 1] = +\infty - 1 = +\infty \qquad f(-1,5) = 4,22$	1
2a	$\lim_{\substack{x \to -\infty \\ x \to +\infty}} \left[x(1 - e^{-x}) - 1 \right] = \lim_{\substack{x \to +\infty \\ x \to +\infty}} \left[x - (x)e^{-x} - 1 \right] = +\infty$	1
2b	$\lim_{x \to +\infty} [x(1 - e^{-x}) - 1 - x + 1] = \lim_{x \to +\infty} [-x(e^{-x})] = 0$ $\lim_{x \to +\infty} [x(1 - e^{-x}) - 1 - x + 1] = \lim_{x \to +\infty} [-x(e^{-x})] = 0$ Thus, (d) is an asymptote to (C) at $+\infty$	1
2c	f(x)-x+1= -xe ^{-x} (C) is above (d) for x>0 (C) is below (d) for x<0 (C) and (d) intersect at (0,1)	1
3a	$f'(x) = 1 - e^{-x} + xe^{-x}$ $f(0)=0$	1
3b	$ \begin{array}{c cccc} x & 0 & +\infty \\ f'(x) & + & \\ f(x) & \longrightarrow & \\ \end{array} $	0.5
4)		
4	The tangent to (C) is parallel to (d) then f '(x)=1 So $e^{-x}(x-1)=0$ so $x=-1$ and $y=-e+2$ (T): $y=1(x+1)-1/e+2$	1
5		1
6a	$f'(x) + f(x) = 1 - e^{-x} + xe^{-x} + x - 1 - xe^{-x} = -e^{-x} + x$	0.5
6b	$A = \int_0^1 f(x) =$	0.5