امتحانات الشهادة الثانوية العامة فرع: علوم الحياة

وزارة التربية والتعليم العالي المديرية العامة للتربية دائرة الامتحانات الرسمية

الاسم:	مسابقة في مادة الرياضيات	عدد المسائل: ثلاث
الرقم:	المدة: ساعة ونصف	

ملاحظة: - يسمح باستعمال آلة حاسبة غير قابلة للبرمجة او اختزان المعلومات او رسم البيانات. - يستطيع المرشح الإجابة بالترتيب الذي يناسبه (دون الالتزام بترتيب المسائل الواردة في المسابقة)

I- (4 points)

In the table below, only one among the proposed answers to each question is correct.

Write the number of each question and give, with justification, the answer that corresponds to it.

No	Questions	Proposed Answers		
1	Questions	a	b	c
1	The inequality $lnx < 1$ is verified for	x < 0	0 < x < e	x > e
2	The equation $\ln^2 x + \ln x - 6 = 0$ has two roots x_1 and x_2 . The product x_1 . x_2 is equal to	-6	e ⁻¹	e ³⁰
3	$\lim_{x\to+\infty} \left(\frac{x+\ln x}{x} + 1 \right) =$	+8	1	2
4	A security entrance keyboard of a building is formed of three letters A, B and C and five digits 1, 2, 3, 4 and 5. The entrance code is formed of one letter followed by a number consisting of three distinct digits. The number of all possible codes is	15	180	375

II- (6 points)

An urn U contains red balls and black balls holding distinct natural numbers.

- 60 % of the balls are red of which 80 % hold odd numbers.
- 70 % of the black balls hold odd numbers.

Part A

One ball is selected from the urn. Consider the following events:

R: "the selected ball is red" and O: "the selected ball holds an odd number".

- 1) Show that the probability $P(O \cap R)$ is equal to 0.48 and calculate $P(O \cap \overline{R})$.
- **2)** Deduce that P(O) = 0.76.
- 3) Are the events R and O independent? Justify your answer.

Part B

Suppose in this part that the number of balls in the urn U is 50.

- 1) Show that the number of red balls holding odd numbers is equal to 24.
- 2) Copy and complete the following table:

	Red	Black	Total
Odd			38
Even			
Total	30		50

- 3) Three balls are selected randomly and simultaneously from the urn U.
 - **a-** Calculate the probability of selecting at least one red ball holding an odd number.
 - **b-** The even numbered balls hold the numbers 2, 4, 6, ..., 24. Knowing that the three selected balls hold even numbers, calculate the probability that each of these balls holds a number greater than 15.

III- (10 points)

The plane is referred to an orthonormal system $(0; \vec{1}, \vec{j})$.

Consider the function f defined, on \mathbb{R} , as $f(x) = 2xe^{-x+1} + 1$ and denote by (C) its representative curve.

- 1) Determine $\lim_{x \to -\infty} f(x)$.
- 2) Show that $\lim_{x\to +\infty} f(x) = 1$. Deduce an asymptote (d) to (C).
- 3) Show that $f'(x) = 2(1-x)e^{-x+1}$.
- 4) Copy and complete the following table of variations of f.

X	-∞	1	+∞
f'(x)		0	
f(x)			

- 5) a- Show that the equation f(x) = 0 has, on \mathbb{R} , a unique solution α .
 - **b-** Verify that $-0.16 < \alpha < -0.15$.
- 6) Calculate f(-0.5) and f(0) then draw (C) and (d).
- 7) a- Show that $\int xe^{-x+1}dx = (-x-1)e^{-x+1} + K$ where K is a real number.
 - **b-** Deduce the area limited by (C), the straight line with equation y = 3 and the two straight lines with equations x = 0 and x = 4.

امتحانات الشهادة الثانوية العامة فرع: علوم الحياة

وزارة التربية والتعليم العالي المديريّة العامّة للتربية دائرة الامتحانات الرسميّة

عدد المسائل: ثلاث

رياضيات	دة ال	حيح ما	سس تص	١
رياصيات	1) 0.	حيح ما	ں بصد	ww

I	Answers		Grade 4 pts
1	Lnx < 1 . So, x < e but x > 0 . Thus, $0 < x < e$	(b)	1
2	The roots of the equation : $\ln^2 x + \ln x - 6 = 0$ are $x_1 = e^{-3}$ et $x_2 = e^2$. then $x_1 \cdot x_2 = e^{-1}$	(b)	1
3	$\lim_{x \to +\infty} \left(\frac{x + \ln x}{x} + 1 \right) = \lim_{x \to +\infty} \left(\frac{x}{x} + \frac{\ln x}{x} + 1 \right) = 1 + 0 + 1 = 2 \text{ since } \lim_{x \to +\infty} \left(\frac{\ln x}{x} \right) = 0$	(c)	1
4	The number of all codes is $: 3 \times A_5^3 = 180$	(b)	1

II	Answers						Grade 6 pts
A1	$P(O \cap R) = P(O / R) \times P(R) = 0.8 \times 0.6 = 0.48$ $P(O \cap \overline{R}) = P(O / \overline{R}) \times P(\overline{R}) = 0.7 \times 0.4 = 0.28$						1
A2	$P(O) = P(O \cap R) + P($	$O \cap \overline{R}) = 0.$	48 + 0.28 =	0.76			0.5
A3	Since $P(O \cap R) = 0.48 \neq P(O) \times P(R) = 0.76 \times 0.6 = 0.456$ Then, the events R and O are not independent.					0.5	
B1	The number of red ball	ls holding o	dd numbers	is 50×0.4	8 = 24		1
			Red	Black	Total		
B2		Odd	24	14	38		1
		Even	6	6	12		
		Total	30	20	50		
B3.a	P (selecting at least one red ball holding an odd number) = $1 - \frac{C_{26}^3}{C_{50}^3} = \frac{85}{98}$						1
	2;4;6;8;10;12;14; <u>16</u> ; <u>18</u> ; <u>20</u> ; <u>22</u> ; <u>24</u>						
B3.b	P (each of the balls holds a number greater than 15/ knowing that the numbers on the balls are					1	
	even) = $\frac{C_5^3}{C_{12}^3} = \frac{1}{22}$						

III	Answers	Grade 10 pts
1	$\lim_{x \to -\infty} f(x) = (-\infty)(+\infty) + 1 = -\infty$	1
2	$\lim_{x\to +\infty} (2x)e^{-x+1} = +\infty . \text{ 0 Indeterminate form };$ $\lim_{x\to +\infty} \frac{2x}{e^{x-1}} = \frac{0}{0} \text{ I.F. then } \lim_{x\to +\infty} \frac{2x}{e^{x-1}} \text{ Using HR } \lim_{x\to +\infty} \frac{2}{e^{x-1}} = 0.$ Thus, $\lim_{x\to +\infty} f(x) = 0 + 1 = 1$ (d): $y = 1$ is an asymptote to (C).	1
3	$f'(x) = (2x)' \cdot e^{-x+1} + (-e^{-x+1}) \cdot 2x + 0 = 2(1-x)e^{-x+1}$	0.5
4	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.5
5.a	 Over] -∞; 1 [: f is continuous, strictly increasing from -∞ to 3 then the equation f(x) = 0 has one solution α Over [1; +∞ [: f is continuous strictly decreasing from 3 to 1 then, the equation f(x) = 0 has no solution. Therefore, the equation f(x) = 0 has, on ℝ, a uniques solution α 	1
5.b	$ f(-0.16) \approx -0.02 < 0 $ $ f(-0.15) \approx +0.05 > 0 $	0.5
6	$f(-0.5) = -e^{1.5} + 1 \approx -3.481$ $f(0) = 1$	2
7.a	$(-x-1)'e^{-x+1} + (-x-1)(e^{-x+1})' = (-1+x+1)e^{-x+1} = xe^{-x+1}$	1
7.b	$A = \int_0^4 [3 - f(x)] dx = \int_0^4 [2 - 2xe^{-x+1}] dx$ $= [2x + 2(x+1)e^{-x+1}]_0^4 = 8 + 10 e^{-3} - 2 e \approx 3.06 \text{ (units)}^2.$	1.5