الاسم:	مسابقة في مادة الرياضيات	عدد المسائل: خمس
الرقم:	المدة: ثلاث ساعات	

ملاحظة: - يسمح باستعمال آلة حاسبة غير قابلة للبرمجة او اختزان المعلومات او رسم البيانات. - يستطيع المرشّح الإجابة بالترتيب الذي يناسبه (دون الالتزام بترتيب المسائل الواردة في المسابقة).

I- (2 points)

In the table below, only one among the proposed answers to each question is correct. Write down the number of each question and give, **with justification**, the corresponding answer.

No	Questions	Answers		
5 1=	Questions	a	b	С
1	Let f be the function given by $f(x) = \ln(x^2 - 3x)$ The domain of definition of f is	[0;+∞[[1;3[]-∞;0[∪]3;+∞[
2	For all real numbers x, $ln(e^x + 2) - x$ is equal to	$\ln\left(\frac{e^{x}+2}{x}\right)$	ln (2)	$\ln\left(\frac{e^x+2}{e^x}\right)$
3	Let $I = \int_{0}^{1} \frac{e^{x}}{3 + e^{x}} dx$. The value of I is	$\ln\left(\frac{e+3}{4}\right)$	$\ln\left(\frac{e+3}{3}\right)$	ln (e + 3)
4	Given below the table of variations of a continuous function f: $ \begin{array}{c cccc} x & 2 & 4 & 5 \\ \hline f'(x) & - & 0 & + \\ \hline f(x) & & 3 & 6 \end{array} $ The equation $f(x) = 4$ has	one root only	two roots	no roots

II- (3 points)

The complex plane is referred to the direct orthonormal system $(0; \vec{u}, \vec{v})$.

Consider the points A, B and C with affixes $z_A = -2 + 2i$, $z_B = -2i$ and $z_C = 4$.

For every point M with affix z, assign the point M' with affix z' such that $z' = \frac{2z+4i}{iz+2+2i}$ with $z \neq -2+2i$.

- 1) In the case where z = 0, give the exponential form of z'.
- 2) Write $\frac{z_A z_B}{z_C z_B}$ in algebraic form. Deduce the nature of triangle ABC.
- 3) a- Verify that $z' = \frac{2(z z_B)}{i(z z_A)}$
 - **b-** Deduce that $OM' = \frac{2BM}{AM}$
 - **c-** Show that when M moves on the perpendicular bisector of [AB], the point M' moves on a circle whose center and radius are to be determined.

III- (3 points)

An urn U contains 10 balls: 6 blue balls and 4 red balls.

Part A

Two balls are selected randomly and simultaneously from U.

Consider the following events:

A: "The two selected balls have the same color"

B: "The two selected balls have different colors".

- 1) Verify that the number of possible outcomes is 45.
- 2) Show that the probability $P(A) = \frac{7}{15}$ and deduce P(B).

Part B

In this part, a fair die numbered from 1 to 6 is rolled.

- If the die shows an even number, then two balls are selected randomly and simultaneously from U.
- If the die shows an odd number, then two balls are selected randomly and successively with replacement from U.

Consider the following events:

E: "The die shows an even number"

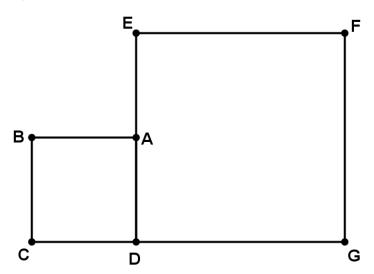
F: "The selected balls have the same color".

- 1) Calculate P(F / E) and verify that P(F \cap E) = $\frac{7}{30}$.
- 2) Verify that $P(F \cap \overline{E}) = \frac{13}{50}$ and deduce P(F).
- 3) Knowing that the two selected balls have the same color, calculate the probability that the die shows an even number.

IV- (4 points)

In the following figure,

- ABCD and EDGF are two direct squares.
- CD = 1 and DG = 2.



Denote by S the direct plane similitude with angle $\frac{\pi}{2}$ that maps B onto D and maps A onto E.

- 1) Calculate the ratio k of S and show that S(C) = G.
- 2) Denote by (T) and (T') the circles with diameters [BD] and [AE] respectively.
 - (T) and (T') intersect in two points W and A.

Show that W is the center of S.

- 3) a- Show that the image of line (BD) by S is the line (DF).
 - **b-** Determine the image of line (AD) by S.
 - **c-** Show that S(D) = F.
- 4) Let h be the transformation defined as $h = S \circ S$.
 - **a-** Determine the nature and the characteristic elements of h.
 - **b-** Determine h(B) and deduce that $\overrightarrow{WF} = -4\overrightarrow{WB}$.
- 5) The complex plane is referred to a direct orthonormal system $(C; \overrightarrow{CD}, \overrightarrow{CB})$.
 - **a-** Determine the complex form of h.
 - **b-** Calculate the affix of point W.

V- (8 points)

Part A

Let g be the function defined on \mathbb{R} as $g(x) = (x + 1)e^x - 1$.

- 1) Verify that $\lim_{x \to -\infty} g(x) = -1$ and determine $\lim_{x \to +\infty} g(x)$.
- 2) Copy and complete the following table of variations of g:

3) Calculate g(0). Verify that g(x) < 0 for all x < 0 and that g(x) > 0 for all x > 0.

Part B

Let f be the function defined on \mathbb{R} as $f(x) = x(e^x - 1)$.

Denote by (C) the representative curve of f in an orthonormal system $(O; \vec{i}, \vec{j})$.

Let (d) be the line with equation y = -x.

- 1) a- Determine $\lim_{x\to -\infty} f(x)$ and show that (d) is an asymptote to (C).
 - **b-** Study the relative positions of (C) and (d).
- 2) Determine $\lim_{x\to +\infty} f(x)$ and calculate f(2).
- 3) Verify that f'(x) = g(x) and set up the table of variations of the function f.
- 4) Show that the curve (C) has a point of inflection I with abscissa -2.
- **5**) Draw (d) and (C).
- **6**) The equation f(x) = 1 has two real roots α and β such that $\alpha < 0 < \beta$.

a- Prove that
$$\int xe^x dx = (x-1)e^x + k$$
, with $k \in \mathbb{R}$.

b- Let $A(\alpha)$ be the area of the region bounded by the curve (C), (d), the line $x = \alpha$ and the y-axis.

Show that
$$A(\alpha) = \left(1 + \alpha - \frac{1}{\alpha}\right)$$
 units of area.

دورة العام ٢٠٢١ العاديّة الاثنين ٢٦ تموز ٢٠٢١	امتحانات الشهادة الثانوية العامة فرع: العلوم العامة	وزارة التربية والتعليم العالي المديرية العامة للتربية دائرة الامتحالات الرسمية
	أسس تصحيح مسابقة الرياضيات	عدد المسائل: خمس

I	Answers	Mark
1	$f(x) = \ln(x^2 - 3x)$. $x^2 - 3x > 0$ then $x(x - 3) > 0$ so $x \in]-\infty$; $0[\cup]3$; $+\infty[$. Then c	0.5
2	$\ln(e^{x} + 2) - x = \ln(e^{x} + 2) - \ln(e^{x}) = \ln(\frac{e^{x} + 2}{e^{x}})$. Then c	0.5
3	$\int_0^1 \frac{e^x}{3 + e^x} dx = \ln(3 + e^x) _0^1 = \ln(3 + e) - \ln 4 = \ln\left(\frac{e + 3}{4}\right).$ Then a	1
4	Since f is continuous and strictly decreasing over [2; 4] from $3 < 4$ to $-1 < 4$ then the equation $f(x) = 4$ has no solution over this interval. Since f is continuous and strictly increasing over [4; 5] from $-1 < 4$ to $6 > 4$ then the equation $f(x) = 4$ has one root over this interval. Then a	1

II	Answers	Mark
1	For $z = 0$, $z' = \frac{4i}{2+2i} = \sqrt{2}e^{i\frac{\pi}{4}}$	1
2	$\frac{z_A - z_B}{z_C - z_B} = \frac{-2 + 2i + 2i}{4 + 2i} = i. \text{ Thus } \left \frac{z_A - z_B}{z_C - z_B} \right = 1 \text{ and } \arg(\frac{z_A - z_B}{z_C - z_B}) = \frac{\pi}{2} (2\pi).$ Triangle ABC is right isosceles with vertex B.	1
3a	$z' = \frac{2(z+2i)}{i(z+2-2i)} = \frac{2(Z-Z_B)}{i(Z-Z_A)}$	0.5
3b	$ z' = \frac{ 2 Z - Z_B }{ i Z - Z_A } = \frac{2BM}{AM}$	1
3c	AM = BM then $OM' = Z' = 2$, then M' varies on the circle with center O and radius 2.	1

III	Answers	Mark
A1	The number of possible outcomes is $C_{10}^2 = 45$	1
A2	$P(A) = \frac{C_6^2 + C_4^2}{C_{10}^2} = \frac{7}{15}$ $P(B) = 1 - P(A) = \frac{8}{15} \text{ or } P(B) = \frac{C_6^1 \cdot C_4^1}{C_{10}^2} = \frac{8}{15}$	1
	$P(B) = 1 - P(A) = \frac{8}{15} \text{ or } P(B) = \frac{C_6^1 \cdot C_4^1}{C_{10}^2} = \frac{8}{15}$	1
В1	$P(F / E) = P(A) = \frac{C_6^2 + C_4^2}{C_{10}^2} = \frac{7}{15}$ $P(F \cap E) = P(F / E) \times P(E) = \frac{7}{15} \times \frac{1}{2} = \frac{7}{30}$	1
	$P(F \cap E) = P(F / E) \times P(E) = \frac{7}{15} \times \frac{1}{2} = \frac{7}{30}$	
B2	$P(F \cap \overline{E}) = P(F / \overline{E}) \times P(\overline{E}) = \left(\frac{6 \times 6}{10 \times 10} + \frac{4 \times 4}{10 \times 10}\right) \times \frac{1}{2} = \frac{52}{100} \times \frac{1}{2} = \frac{13}{50}$ $P(F) = P(F \cap E) + P(F \cap \overline{E}) = \frac{7}{30} + \frac{13}{50} = \frac{37}{75}$	1
	$P(F) = P(F \cap E) + P(F \cap \overline{E}) = \frac{7}{30} + \frac{13}{50} = \frac{37}{75}$	1
В3	$P(E / F) = \frac{P(E \cap F)}{P(F)} = \frac{\frac{7}{30}}{\frac{37}{75}} = \frac{35}{74}$	0.5

IV	Answers	Mark
	S: B o D, A o E then the ratio $k = \frac{DE}{AB} = \frac{2}{1} = 2$.	
1	$(\overrightarrow{BC}; \overrightarrow{DG}) = \frac{\pi}{2} [2\pi], \frac{\overrightarrow{DG}}{\overrightarrow{BC}} = 2 \text{ et } S(B) = D \text{ then } S(C) = G.$	
	The center of S belongs (T) and (T') because $\alpha = \frac{\pi}{2}$ and $S(B) = D$ and $S(A) = E$	
2	Then the center is W or A.	1
	But $S(A) = E$ then A is not invariant by S then W is the center.	
3a	S(BD) = line passing through D and perpendicular to (BD), then $S(BD)$ = (DF)	0.5
3b	S(AD) = line passing through E and perpendicular to (AD), then $S(AD)$ = (EF)	0.5
3c	$\{D\} = (BD) \cap (AD) \text{ then } \{S(D)\} = S(BD) \cap S(AD) = (DF) \cap (EF) = \{F\}. \text{ Then } S(D) = F.$	0.5
4a	$h = S \circ S = Sim(W, 4, \pi) = hom(W, -4)$	0.5
415	h(B) = S(S(B)) = S(D) = F	1
4b	$h(B) = F$, then $\overrightarrow{WF} = -4\overrightarrow{WB}$	
	C(0; 0), D(1; 0), B(0; 1) et F(3; 2).	
5a	h: $z' = az + b$ then $z' = -4z + b$.	0.5
	h(B) = F then 3 + 2i = -4(i) + b then b = 3 + 6i then z' = -4z + 3 + 6i	
5b	W is invariant, then $z = -4z + 3 + 6i$ then $W(\frac{3}{5}; \frac{6}{5})$	0.5

V	Answers	Mark
A1	$\lim_{x \to -\infty} g(x) = \lim_{x \to -\infty} [(x+1)e^x - 1] = \lim_{x \to -\infty} (xe^x + e^x - 1) = 0 + 0 - 1 = -1$ since $\lim_{x \to -\infty} e^x = 0$ and $\lim_{x \to -\infty} xe^x = 0$. $\lim_{x \to +\infty} g(x) = \lim_{x \to +\infty} [(x+1)e^x - 1] = +\infty.$	1
A2	$g'(x) = e^{x} + (x+1)e^{x} = (x+2)e^{x}$ $\frac{x}{g'(x)} - 0 + \frac{1}{g(x)}$ $g(x) -1 + \infty$	1
A3	g(0) = 0. Over $] -\infty$; $0[$, $g(x) < 0$ because the maximum of g is less than zero. Over $]0; +\infty[$, $g(x) > 0$ because the minimum of g is greater than zero.	1.5
B1a	$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} [x(e^x - 1)] = -\infty(0 - 1) = +\infty$ $\lim_{x \to -\infty} [f(x) + x] = \lim_{x \to -\infty} xe^x = 0$ then (d) is an asymptote to (C) at $-\infty$.	1
B1b	$f(x) + x = xe^{x}$ If $x \in]-\infty$; $0[$, $f(x) + x < 0$, then (C) is below (d) If $x \in]0$; $+\infty[$, $f(x) + x > 0$, then (C) is above (d) If $x = 0$, $f(x) + x = 0$, then (d) and (C) intersect at point O.	1
B2	$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} [x(e^x - 1)] = +\infty(+\infty + 1) = +\infty$ $f(2) = 2(e^2 - 1) = 12.77$	1

	$f'(x) = e^x - 1 + xe^x = (x+1)e^x - 1 = g(x).$	
В3	$ \begin{array}{c ccccc} x & -\infty & 0 & +\infty \\ \hline f'(x) & - & 0 & + \\ \hline f(x) & +\infty & & +\infty \end{array} $	1.5
B4	$f''(x) = g'(x)$; then $f''(x)$ vanishes at -2 and changes its sign, then (C) has a point of inflection $I(-2; 2-2e^{-2})$.	0.5
B5	y 12 0 (C)	1
B6a	$[(x-1)e^x]' = e^x + (x-1)e^x = xe^x$, then $\int xe^x dx = (x-1)e^x + k$, with $k \in \mathbb{R}$.	1
B6b	Over $[-2; 0]$, (C) is below (d), then $A = \int_{\alpha}^{0} (-x - f(x)) dx = \int_{\alpha}^{0} -x e^{x} dx = [(1 - x)e^{x}]_{\alpha}^{0} = 1 - (1 - \alpha)e^{\alpha}$ but $f(\alpha) = 1$ then $\alpha(e^{\alpha} - 1) = 1$ then $e^{\alpha} = \frac{1}{\alpha} + 1$ Then $A(\alpha) = 1 - (1 - \alpha)(\frac{1}{\alpha} + 1) = 1 - \frac{1}{\alpha} - 1 + 1 + \alpha = 1 + \alpha - \frac{1}{\alpha}$ units of area.	1.5