الاسم:	مسابقة في مادة الفيزياء	
الرقم:	المدة: ساعة واحدة	

Cette épreuve est formée de quatre exercices obligatoires repartis sur deux pages. L'usage d'une calculatrice non programmable est autorisé

Exercice 1: (4 points)

Conducteur ohmique

Un conducteur ohmique (D₁), de résistance R₁, est soumis à une tension U réglable et continue.

Choisir la réponse correcte. Justifier.

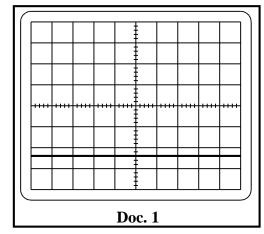
- 1) La tension U aux bornes de (D₁) et l'intensité I du courant électrique qui le traverse sont :
 - a. inversement proportionnelles
- **b.** proportionnelles
- c. égales
- 2) (D₁) reçoit, durant une certaine durée t, une énergie électrique de 3000 J. L'énergie thermique fournie par (D₁) durant t est :
 - a. pratiquement égale à 3000 J
- **b.** supérieure à 3000 J
- c. inférieure à 3000 J

- 3) En diminuant la tension U, la résistance R_1 :
 - a. augmente

- **b.** reste la même
- c. diminue
- **4**) (D₁) est branché en série avec un autre conducteur ohmique (D₂) de résistance R₂ plus grande que R₁. La résistance R du conducteur ohmique équivalent à (D₁) et (D₂) est :
 - a. plus petite que R₁
- **b.** plus grande que R₂
- **c.** comprise entre R_1 et R_2

Exercice 2: (5 points)

l'oscilloscope.


Étude d'une tension électrique à l'aide d'un oscilloscope

Le document 1 représente l'oscillogramme d'une tension U délivrée par une source de tension (G). En l'absence de toute tension, la ligne lumineuse horizontale passe par le centre de l'écran de

La sensibilité verticale de l'oscilloscope est : $S_V = 5 \text{ V/div}$.

- 1) U est une tension continue. Justifier.
- 2) Nommer une source de tension permettant de délivrer ce type de tension.
- 3) Déterminer la valeur de la tension U.
- 4) Indiquer, en le justifiant laquelle des bornes, P (positive) ou N (négative), de (G) est reliée à la masse de l'oscilloscope.
- **5**) On inverse les branchements de l'oscilloscope aux bornes de (G).

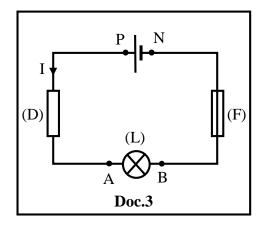
Indiquer le sens du déplacement de la ligne lumineuse.

Exercice 3: (5 points)

Puissance maximale

Le document 2 représente la caractéristique intensité-tension d'un conducteur ohmique (D) de résistance R.

- 1) En se référant au document 2 :
 - **1.1**) Indiquer l'intensité I du courant qui traverse (D) lorsque la tension à ses bornes est U = 12 V.
 - **1.2**) Déduire que $R = 80 \Omega$.
- 2) P est la puissance électrique consommée par (D).
 - 2.1) Donner l'expression de P en fonction de U et de I.
 - **2.2**) Montrer que $P = RI^2$.
- 3) Calculer la puissance maximale P_{max} supportée par (D), sachant que l'intensité maximale du courant pouvant traverser (D) est $I_{max} = 0.25$ A.



Exercice 4: (6 points)

Rôle d'un fusible

Le circuit du document 3 comporte les éléments électriques suivants :

- une pile maintenant entre ses bornes une tension constante U_{PN};
- une lampe (L) portant les inscriptions (6 V; 100 mA);
- un fusible convenable (F) de résistance négligeable ;
- un conducteur ohmique (D) de résistance $R = 30 \Omega$.
- 1) Donner la signification de chacune des inscriptions portées par (L).
- 2) La tension U_{BN} aux bornes de (F) est nulle. Justifier.
- 3) (L) brille normalement.
 - **3.1**) L'intensité du courant dans le circuit est I = 100 mA. Justifier.
 - 3.2) Calculer la tension U_{PA} aux bornes de (D).
 - **3.3**) Montrer que $U_{PN} = 9 \text{ V}$.
- 4) On relie les bornes P et A de (D) par un fil de connexion de résistance négligeable.
 - **4.1**) Juste après avoir court-circuité (D), la tension aux bornes de (L) sera 9 V. Justifier.
 - **4.2**) La lampe (L) risque alors d'être grillée. Pourquoi ?
 - **4.3**) En réalité, (L) s'éteint et ne grille pas. Expliquer.

مسابقة في مادة الفيزياء أسس التصحيح - فرنسي

Exercice 1: (4 pts)

Conducteur ohmique

Question	Réponse	Note
1	b. Car d'après la loi d'Ohm U = R×I.	0,5 0,5
2	a. Un conducteur ohmique convertit totalement l'énergie électrique qu'il reçoit en énergie thermique.	0,5 0,5
3	b. la résistance est le rapport U/I qui reste constant indépendamment des valeurs de U et I. Ou : la résistance d'un conducteur ohmique est une grandeur qui le caractérise et qui reste constante même si U ou I varie.	0,5 0,5
4	b. $Car R = R_1 + R_2$ Ou : car dans une association en série, la résistance équivalente est plus grande que la plus grande résistance qui est R_2 dans ce cas.	0,5 0,5

Exercice 2: (5 points)

Étude d'une tension électrique à l'aide d'un oscilloscope

Question	Réponse	Note
1	Car l'oscillogramme obtenu est une ligne lumineuse horizontale. Ou : Car cette tension reste constante au cours du temps.	1
2	Une pile, une batterie, un accumulateur,	1
3	$U = y \times Sv = -2,4 \times 5 = -12V.$	1
4	La borne P est reliée à la masse de l'oscilloscope car la tension visualisée est négative <u>ou bien</u> car la ligne lumineuse est déplacée vers le bas.	1
5	La ligne lumineuse horizontale se déplace vers le haut.	1

Exercice 3: (5 points)

Puissance maximale

Question	Réponse	Note
1.1	I = 150mA	0,5
1.2	$R = \frac{U}{I} = \frac{12}{0.15} = 80\Omega.$ Ou tout autre point de la droite $Ou R = \frac{\Delta U}{\Delta I}$	1,5
2.1	P = UI.	0,5
2.2	$P = UI \text{ et } U = RI \text{ donc } P = RI \times I = RI^2.$	1
3	$Pmax = RI_{max}^2 = 80 \times 0.25^2 = 5W$	1,5

Exercice 4: (6 points)

Rôle d'un fusible

Question	Réponse	Note
1	6V : tension nominale ; 100 mA : intensité nominale.	0,5 0,5
2	U _{BN} = 0V Car le fusible est de résistance négligeable.	0,5
3.1	Puisque (L) brille normalement, donc I = 100 mA.	0,5
3.2	$U_{PA} = R \times I = 30 \times 0, 1 = 3V$ (loi d'ohm).	1,25
3.3	$U_{PN} = U_{PA} + U_{AB} + U_{BN} \mbox{ (loi d'additivit\'e des tensions dans une association en série) avec } U_{AB} = tension nominale de (L) = 6V \mbox{ car (L) brille normalement} \\ U_{PN} = 3 + 6 + 0 = 9V.$	1,25
4.1	$U_{PN} = U_{PA} + U'_{AB} + U_{BN}$ (loi d'additivité des tensions) $9 = 0 + U'_{AB} + 0$ donc $U'_{AB} = 9V$.	0,5
4.2	(L) risque de griller car la tension à ses bornes sera plus grande que sa tension nominale.	0,5
4.3	Car le fusible fond, coupe le courant et protège la lampe.	0,5