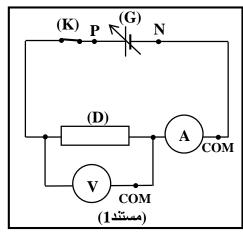
الاسم:	مسابقة في مادة الفيزياء
الرقم:	المدة: ساعّة واحدة

تتكون هذه المسابقة من أربع تمارين الزامية على صفحتين . يمكنك استخدام الالة الحاسبة غير القابلة للبرمجة.

التمرين 1 (4 علامات) صح أو خطأ


أجب بصح أو خطأ أمام كل عبارة من العبارات التالية، ثم أعد كتابة العبارات غير الصحيحة بشكل صحيح.

- ر $R_{\rm eq}=R_1+R_2:$ المقاومة المكافئة $R_{\rm eq}$ لمقاومتين $R_{\rm eq}$ متصلتين على التوازي هي
 - ثقاس قيمة المقاومة بجهاز يسمى الفولتميتر.
 - تأثیر جول هو تحویل الطاقة الحراریة إلى الطاقة کهربائیة.
- 4) قيمة الجهد الفعّال بين طرفي مأخذ منزلي، الحامي (الحار) والبارد (المعتدل)، حوالي 220V.

التمرين 2 (6 علامات) الطاقة المستهلكة بمكون كهربائي

لنفرض أن الدائرة الكهربائية في المستند 1 تتكون من:

- مولد تيار مستمر (G) بجهد قابل للتعديل؛
 - مكون كهربائي(D) ؟
 - مقياس التيار الكهربائي أميتر (A)؛
 - فولتميتر (V)؛
 - -اسلاك توصيل؛
 - مفتاح (K).

- 1) عندما نقوم بتغيير جهد (G) من 0 إلى 10 V.
- نسجل قيم U و I المعروضة على التوالي بواسطة (V) و (A). تظهر النتائج في الجدول أدناه:

	· -3 · <u> </u>	30 () 3 (٠, ٠,٠	0 33 - 3	, - (
U (V)	0	2	4	6	10
I (mA)	0	10	20	30	50

1.1) ارسم منحنى الجهد U كدالة بالتيار I، بالمقياس التالى:

كل 1cm على المحور الافقي يساوي 10mA.

كل 1cm على المحور العامودي يساوي 2V.

- (D) (1.2) هي مقاومة. علل.
- 1.3) استنتج قيمة مقاومتها R.
- $U = 8 \ V$ هو (D) فيمة الجهد حول (2) هو
 - 2.1) أوجد بيانيا قيمة التيار I.
- P = 0.32 W هي (D) إثبت أن القدرة الكهربائية المستهلكة بالمكون (D) وأبت أن القدرة الكهربائية المستهلكة بالمكون
- 2.3) احسب الطاقة الكهربائية المستهلكة (بالجول J) بالمكون (D) خلال 10 دقائق من العمل.

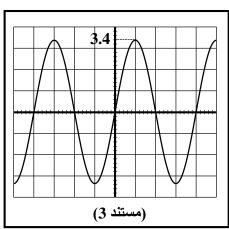
دراسة دائرة كهربائية

التمرين 3: (4 علامات)

تتكون الدائرة الكهربائية بالمستند 2 من:

- ، مولد (G) يحافظ عبر أطرافه على جهد ثابت(G) عبر
 - (L_3) و (L_2) ، (L_1) ؛
 - مفتاح (K) ؛
 - اسلاك توصيل.
- . $U_{AB}=3~V$ هو (L_1) مغلق. الجهد عبر (K) مغلق. (1
- U_{BC} و $U_{CN}=0$ أوجد الجهد $U_{PA}=0$ إذا علمنا أن $U_{DR}=0$
 - (1.2) استنتج، مع ذكر القانون المستخدم، الجهد حول أطراف المصباح (L_2) .
 - I_1 =500 mA يرسل المولد تيارًا قدره (1.3

. I_3 التيار الذي يعبر (L_2) هو $I_2 = 300 \text{ mA}$ التيار الذي يعبر (L_3). أوجد قيمة


2) المفتاح (K) مفتوح.

ما هي القيم الجديدة لـ U_{PA} و U_{BC} ?

يمثل المستند 3 شكل جهد تردد جيبي (u) الذي يتم توليده بواسطة مولد التردد المنخفض(LFG) ، بغياب أي توتر كهربائي، يمر الخط المضيء الأفقى بمركز شاشة راسم الذبذبات.

- : 50 Hz هو (u) اذا علمنا أن التردد f لـ (1) هو (1
- 1.1) اثبت أن زمنها الدوري T هو 20ms؛
- استنتج الحساسية الأفقية S_h لراسم الذبذبات.
- إذا كانت الحساسية الرأسية S_v لراسم الذبذبات هيV/div0 ، بالعودة للمستند 3، احسب القيمة العظمى U_m للجهد (u).
- 3) يشير الفولتميتر، في وضع التيار المتردد AC المتصل عبر هذا المولد، إلى قيمة U.
 - 3.1) ماذا يمثل U ؟
 - 3.2) احسب قيمتها.
 - 4) مصباح (L) يعمل كمقاوم ويحمل اشارة 12V ومتصل عبر هذا المولد.
 - 4.1) ماذا تعنى اشارة 12V على المصباح؟
 - 4.2) يضيء (L) بشكل طبيعي. لماذا؟

