الاسم:	مسابقة في مادة الرياضيات	مسائل: خمس	عدد ال
الرقم:	المدة: ساعتان		

ارشادات عامة: - يسمح باستعمال آلة حاسبة غير قابلة للبرمجة أو اختزان المعلومات أو رسم البيانات. - يستطيع المرشح الإجابة بالترتيب الذي يناسبه دون الإلتزام بترتيب المسائل الواردة في المسابقة.

I- (4 points)

In the table below, only one of the proposed answers to each question is correct. Write down the number of the question and give, with justification, its corresponding answer.

Nº	Questions	Answers		
		a	b	c
1)	$\left(\sqrt{3}+2\right)^2+\left(\sqrt{3}-2\right)^2=$	14	26	$8\sqrt{3}$
2)	$\frac{\sqrt{3}}{\sqrt{3}-\sqrt{2}} =$	$1 - \frac{\sqrt{3}}{\sqrt{2}}$	$3+\sqrt{6}$	$3-\sqrt{6}$
3)	If the following table is a table of proportionality, then $x =$ $ \frac{1}{2} \qquad x $ $ \frac{5}{2} \qquad 10 $	1	2	5
4)	The original price of a pants is 100 000 LL. After an increase of 10 %, followed by a decrease of 10 %, the final price of this pants is:	99 000 LL	100 000 LL	101 000 LL

II- (4 points)

Given A(x) = 2(x-3)(x-1) and $B(x) = x^2 - 9$.

- 1) Show that $A(x) = 2x^2 8x + 6$, then solve the equation A(x) = 6.
- 2) a. Factorize B(x).
 - b. Solve the equation B(x) = 0.
- 3) Given $F(x) = \frac{2(x-3)(x-1)}{(x-3)(x+3)}$.
 - a. For what values of x, F(x) is defined?
 - b. Simplify F(x).
 - c. Does the equation F(x) = 2 have a solution? Justify.

III- (1.5 points)

The number of students of class A is 35 and that of class B is 25.

- 40 % of students of class A practice basketball.
- 10 students of class B practice basketball.
- 1) Verify that the number of students in class A who practice basketball is 14.
- 2) The students of the two classes A and B meet in the same court.

 Calculate the number and the percentage of students who practice basketball in this court.

IV- (6 points)

In an orthonormal system of axes (x'Ox, y'Oy), consider the points A (2; 0), B (0; 4) and E (-4; 0).

Let (d) be the line with equation y = -2x + 4.

- 1) Plot the points A, B and E.
- 2) Verify that A and B are two points on (d), then draw (d).
- 3) Let (d') be the line passing through E and perpendicular to (d).

Verify that
$$y = \frac{1}{2}x + 2$$
 is the equation of (d') .

- 4) The line (d')intersects (y'Oy) at H (0; 2) and intersects (d) at F.
 - a. Verify that the coordinates of F are $\left(\frac{4}{5}, \frac{12}{5}\right)$.
 - b. Show that H is the orthocenter of triangle EAB.
 - c. Prove that (AH) is perpendicular to (EB).
- 5) The line (AH) intersects (EB) at G.
 - a. Prove that the four points E, G, F and A are on the same circle (C) with diameter to be determined.
 - b. Calculate the radius of (C).

V- (4.5 points)

In the adjacent figure:

- (C) is a circle with center O
- [AB] is a diameter of (C) so that AB = 10
- M is a point on (C) so that AM = 8
- L is the point on (AM) so that ML = 4.5
- E is the point on [AB] so that BE = 6.4.
- 1) Draw the figure.
- 2) a. Calculate MB, then show that BL = 7.5.
 - b. Deduce that (BL) is tangent to the circle (C).
- 3) The parallel through E to (AL) intersects (BL) at F.

Use Thales' theorem to prove that BF = 4.8.

b. Deduce that (MF) is parallel to (AB).

	ة والتعليم العالي الشهادة المتوسطة دورة العام ٢٠٢٢ العا					
مديرية العامة للتربية						
لمديرية العامة للتربية مشروع أسس التصحيح مشروع أسس التصحيح Marts of L						
questions	Question I	Mark				
1	$(\sqrt{3}+2)^2 + (\sqrt{3}-2)^2 = 3 + 4\sqrt{3} + 4 + 3 - 4\sqrt{3} + 4 = 14$ (a) 0.5 + 0.5	1				
2	$\frac{(\sqrt{3}+2)^2 + (\sqrt{3}-2)^2 = 3 + 4\sqrt{3} + 4 + 3 - 4\sqrt{3} + 4 = 14 \text{ (a)}}{\frac{\sqrt{3}}{\sqrt{3}-\sqrt{2}} = \frac{\sqrt{3}}{\sqrt{3}+\sqrt{2}} \times \frac{\sqrt{3}+\sqrt{2}}{\sqrt{3}+\sqrt{2}} = 3 + \sqrt{6} \text{ (b)}}$ 0.5 + 0.5 0.5 + 0.5	1				
3	5x = 10 then x = 2 (b) 0.5 + 0.5	1				
4	$100\ 000 \times 1.1 \times 0.9 = 99\ 000\ LL\ (a)$ 0.25 + 0.25 + 0.5	1				
	Question II					
	A(x) = 2(x - 3)(x - 1)					
	$A(x) = 2(x^2 - 3x - x + 3)$ 0.25					
1	$A(x) = 2(x^2 - 4x + 3)$ 0.25	0.75				
	$A(x) = 2x^2 - 8x + 6$ 0.25					
	A/ N = 6					
	$A(x) = 6 2x^2 - 8x = 0 $ 0.25					
	2x(x-4) = 0 x = 0 or $x = 40.25$	0.75				
2a	$\frac{x - 0.01x - 4}{B(x) = (x + 3)(x - 3)}$	0.5				
2b	B(x) = 0 then : $x = -3$ or $x = 3$ 0.25 + 0.25	0.5				
3a		0.5				
34	$F(x) = \frac{2(x-3)(x-1)}{(x-3)(x+3)}$	0.5				
	$F(x)$ is defined for: $(x + 3)(x - 3) \neq 0$ then: $x \neq -3$ and $x \neq 3$ 0.25 + 0.25					
3b	$F(x) = \frac{2(x-1)}{x+3}$.	0.5				
3c	$\frac{2(x-1)}{x+3} = 2$ then:	0.5				
	2x - 2 = 2x + 6 0.25					
	0x = 8 No solution 0.25					
	Question III					
1	$\frac{40}{100} \times 35 = 14$ students of class A practice basketball.	0.75				
	14 + 10 = 24 is the number of students who practice basketball in the court.	0.25				
	100 60					
	x 24					
2	$x = \frac{24 \times 100}{60} = 40$. Then 40 % of the students practice basketball in the court.	0.5				
	60					
	Question IV					
	\6 \dagger					
	a d B					
	G (d)					
	Н	0.75				
1		0.73				
	E O A					
	0.25 + 0.25 + 0.25					
	0.23 + 0.25 + 0.25					

2	$y_{\rm A} = -2x_{\rm A} + 4$	0.5			
	$y_{\rm B} = -2x_{\rm B} + 4$				
	Then A and B are two points on (d).				
	Draw (d).				
2	Slope of (d'): $a \times -2 = -1$; $a = \frac{1}{2}$ then $y = \frac{1}{2}x + b$				
3	(d') passes through E so $y_E = \frac{1}{2}x_E + b$; $b = 2$	0.5			
	(d'): $y = \frac{1}{2}x + 2$.				
4a	(d) passes through F and (d') passes through F or $y = y$. 0.5 + 0.25	0. 75			
4b	H is the point of intersection of the two heights [OB] and [EF]. 0.25 + 0.25	0.73			
4c	(AH) is the third height or the product of slopes $= -1$.	0.5			
5a					
Sa	The two triangles AGE and AEF are right of common hypotenuse [AE], so the four points are on the same circle of diameter [AE]. 0.25 + 0.25 + 0.25				
5b	Radius = $\frac{AE}{2}$ = 3.	0.5			
	Question V				
	L				
1	A B B	0.5			
2a	$MB^2 = 100 - 64 = 36$ then $MB = \sqrt{36} = 6$ (Pythagoras theorem). BL = 7.5 (Pythagoras theorem).				
2b	$BL^2 = MB^2 + ML^2$ (converse of Pythagoras theorem).	0.5			
	Then ABL is right at B.				
	So $(BL) \perp (AB)$.	0.25			
	Then (BL) is tangent to circle (C) at B.				
3	Applying Thales's theorem:				
	$\frac{BE}{DA} = \frac{BF}{DI}$	1			
	BA BL	_			
	$\frac{6.4}{10} = \frac{BF}{7.5}$ then BF = 4.8				
4a		0.5			
	$\frac{\text{LF}}{\text{LB}} = \frac{2.7}{7.5} = 0.36$				
4b					
•	$\frac{LM}{LA} = \frac{4.5}{12.5} = 0.36 \text{ then } \frac{LF}{LB} = \frac{LM}{LA} = 0.36$	0.75			
	Thus (MF) is parallel to (AB) (converse of Thales's theorem). 0.25				