للحظة: - يسمح باستعمال آلة حاسبة غير قابلة للبرمجة او اختزان المعلومات او رسم البيانات. - يستطيع المرشّح الإجابة بالترتيب الذي يناسبه (دون الالتزام بترتيب المسائل الواردة في المسابقة).

I- (5 points)

1) Solve the system: $\begin{cases} x + y = 650000 \\ 2x + 3y = 1350000 \end{cases}$

2) **Shop A** sells musical instruments.

The price of one guitar and one flute is 650 000 LL.

The price of two guitars and three flutes is 1 350 000 LL.

Calculate the price of one guitar and that of one flute.

- 3) Lynn deposited a sum of 5 000 000 LL in a savings account for a period of 4 years at an annual interest rate of 5% compounded annually.
 - a- Calculate the sum in Lynn's account at the end of the fourth year.
 - b- At the end of the fourth year, Lynn drew 6 000 000 LL from her savings account to buy 8 guitars and a certain number of flutes from **Shop A**.

Determine the maximum number of flutes that Lynn can buy.

II- (5 points)

A bag contains 13 balls distributed as shown in the following table:

Color of the ball Number on the ball	Green	Red	White
Odd	4	1	2
Even	2	3	1

1) One ball is randomly selected from the bag.

Consider the following events:

G: "The selected ball is green"

R: "The selected ball is red"

O: "The selected ball holds an odd number".

- a- Calculate the following probabilities: P(G), P(O), $P(G \cap O)$ and $P(G \cup O)$.
- b- Knowing that the selected ball is not red, calculate the probability that this ball holds an odd number.
- 2) Two balls are randomly selected from the bag, one after the other and without replacement. Let S be the event: "The sum of the two numbers on the selected balls is odd". Calculate P(S).

III- (10 points)

Consider the function f defined, over]1, $+\infty[$, as $f(x) = -x + 1 + \frac{m}{x-1}$, where m is a non-zero real number. Denote by (C) the representative curve of f in an orthonormal system $(0; \vec{i}, \vec{j})$.

1) Calculate m so that point A(2, -5) is on the curve (C).

2) In what follows,
$$m = -4$$
 and $f(x) = -x + 1 - \frac{4}{x-1}$.

- a- Determine $\lim_{\substack{x\to 1\\x>1}} f(x)$ and deduce an equation of an asymptote (D) to (C).
- b- Determine $\lim_{x\to +\infty} f(x)$ and show that the line (d) with equation y=-x+1 is an asymptote to (C).
- c- Show that $f'(x) = \frac{(3-x)(x+1)}{(x-1)^2}$.

d- Copy and complete the table of variations of f:

X	1	3	$+\infty$
f '(x)			
f(x)			

- e- Show that the equation f(x) = 0 has no real roots.
- f- Let (L) be the line with equation y = -5. Determine the abscissas of the points of intersection of (L) and (C).
- g- Draw (d), (D), (C) and (L).
- h- Solve graphically the inequality f(x) > -5.

The maximum number of flutes that Lynn can buy is 24.

مسائل: ثلاث أسس التصحيح - مادة الرياضيات		
QI	Correction	Note
1	$x = 600\ 000$ and $y = 50\ 000$	1
	Let x be the price of one guitar and y be the price of one flute	1
	$\int x + y = 650000$	
2	$\begin{cases} x + y = 650000 \\ 2x + 3y = 1350000 \end{cases}$	
2	$x = 600\ 000$ and $y = 50\ 000$	
	The price of one guitar is 600 000LL and the price of one flute is 50 000LL.	1
3a	$F = P(1+i)^{n} = 5\ 000\ 000(1+0.05)^{4} = 6\ 077\ 531.25\ LL$	1
	6 000 000 – 8×600 000 = 1 200 000 LL	
3b	$1\ 200\ 000 \div 50\ 000 = 24$	1

QII	Correction	Note
1a	$P(G) = \frac{6}{13}$	3/4
	$P(0) = \frac{7}{13}$	3/4
	$P(G \cap O) = \frac{4}{13}$	3/4
	$P(O) = \frac{7}{13}$ $P(G \cap O) = \frac{4}{13}$ $P(G \cup O) = \frac{9}{13}$	3/4
1b	$P(O / \bar{R}) = \frac{6}{9} = \frac{2}{3}$	1
2	$p(S) = P(O, E) + P(E, O) = \frac{6}{13} \times \frac{7}{12} \times 2 = \frac{7}{13}$	1

QIII	Correction	Note
1	f(2) = -5 -1 + m = -5 then m = -4	1
2a	$\lim_{\substack{x \to 1 \\ x > 1}} f(x) = -\infty x = 1 \text{ is an asymptote}$	1
2b	$\lim_{x \to +\infty} f(x) = -\infty \qquad \lim_{x \to +\infty} [f(x) - (-x+1)] = \lim_{x \to +\infty} \left(-\frac{4}{x-1} \right) = 0$ Then the line (d) with equation $y = -x + 1$ is an asymptote to (C).	1
2c	$f'(x) = -1 + \frac{4}{(x-1)^2} = \frac{4 - (x-1)^2}{(x-1)^2} = \frac{(3-x)(x+1)}{(x-1)^2} .$	1
2d	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1
2e	First method: According to the table of variations, for $x \in]1$, $+\infty[$ the maximum value of $f(x)$ is $-4 < 0$ then $f(x) < 0$ So $f(x) = 0$ has no real roots. Second method: $f(x) = 0$; $-x + 1 - \frac{4}{x - 1} = 0$; $(x - 1)^2 = -4$ impossible So $f(x) = 0$ has no real roots.	1
2f	$f(x) = -5$; $-x + 1 - \frac{4}{x - 1} = -5$; $-x^2 + 7x - 10 = 0$ then $x = 2$, $x = 5$.	1
2g	(D) (d) (d) (e) (e) (e) (e) (e) (e) (e) (e) (e) (e	2
2h	$f(x) > -5 \text{ for } x \in]2;5[$	1