الاسم:	مسابقة في مادة الرياضيات	عدد المسائل: خمس
الاشتم:	مسابعه في ماده الرياضيات	عدد المسائل: حمس
الر قد.	المرقب اعتان	
الرقم:	المدة: ساعتان	

إرشادات عامة: - يسمح باستعمال آلة حاسبة غير قابلة للبرمجة أو اختزان المعلومات أو رسم البيانات. - يستطيع المرشح الإجابة بالترتيب الذي يناسبه دون الالتزام بترتيب المسائل الواردة في المسابقة.

I - (2 points)

In what follows, show all the steps of calculation:

Given $A = \sqrt{80} - \sqrt{20} + \sqrt{5}$.

- 1) Write A in the form of $m\sqrt{5}$ where m is an integer.
- 2) Let $B = 5\sqrt{5}$.
 - **a.** Show that the adjacent table is a proportionality table.
 - **b.** Write $\frac{20}{B-5}$ in the form of $p + \sqrt{5}$ where p is an integer.

A	$2\sqrt{19} + 1$
$2\sqrt{19}-1$	В

II - (3 points)

A box F contains **twelve** red and black balls.

- 1) If **one** red ball is removed and **one** black ball is added, then the number of red balls becomes double that of black balls.
 - **a.** Prove that the previous information is modeled by the following system: $\begin{cases} x+y=12 \\ x-2y=3 \end{cases}$
 - **b.** Solve the previous system and determine the number of red balls and that of black balls.
- 2) In what follows, the box F contains **nine** red balls and **three** black balls. **Five** red balls and **eight** black balls are added to this box. Calculate the percentage of red balls in this box.

III - (3 points)

In the adjacent figure:

ABC is a right angled triangle at A; AB = 6 and AC = 8.

M is a point of [AB] and N a point of [AC] so that:

$$AN = BM = x \quad (0 < x < 6)$$

Denote by S the area of triangle ABC and S' that of triangle AMN.

- 1) Calculate S.
- 2) Calculate AM in terms of x and show that $S' = \frac{6x x^2}{2}$.
- 3) **a.** Verify that: $3(x-2)(x-4) = 3x^2 18x + 24$.
 - **b.** Calculate x so that S = 6S'.
- 4) **a.** Show that $S' \frac{9}{2} = \frac{-1}{2} (x-3)^2$.
 - **b.** Deduce that the area of triangle AMN is less than or equal to $\frac{9}{2}$.

IV - (6.5 points)

In an orthonormal system of axes x'O x and y'O y, given the points A(3;3), B(6;0) and E(0;-6). Let (d) be the line with equation y=-x+6.

- 1) a. Plot the points A, B and E.
 - **b.** Verify that A and B are two points on (d). Draw (d).
- **2)** The line (d) intersects y'O y at F.

Determine the coordinates of F, then verify that A is the midpoint of [BF].

- 3) a. Verify that an equation of the line (AE) is y = 3x 6.
 - **b.** The line (AE) intersects x'O x at C(2;0). What does point C represent for triangle EBF?
 - **c.** The lines (CF) and (BE) intersect at M. Prove that M is the midpoint of [BE].
- 4) Prove that $OBF = OBE = 45^{\circ}$.
- 5) The parallel through C to (EB) intersects [FB] at K.
 - **a.** Show that the triangle CKB is right isosceles of vertex K.
 - **b.** Deduce that $CK = 2\sqrt{2}$.
- 6) Calculate the ratio $\frac{FC}{FM}$.

V - (5.5 points)

In the adjacent figure:

- OABD is a rectangle so that OA = 5 and AB = 3
- (C) is the circle of center O passing through point A
- The line (BD) intersects the circle (C) at M and N.
- 1) Draw the figure.
- **2) a.** What is the nature of triangle ONA? Justify.
 - **b.** Show that [NA) is the bisector of angle BNO.
- 3) Show that DN = 4 and calculate BN.
- 4) The two lines (NA) and (OD) intersect at L.
 - **a.** Show that the two triangles BAN and OLA are similar.
 - **b.** Deduce that $BN \times LO = 15$, then calculate LO.
- **5**) The perpendicular through A to (OB) intersects circle (C) at F.

Show that (BF) is tangent to the circle (C).

دورة العام 2019 الاستثنائية	امتحانات الشهادة المتوسطة	وزارة التربية والتعليم العالي
الخميس ٢٠١٩ الخميس		المديرية العامة للتربية
		دائرة الامتحانات الرسمية

عدد المسائل: خمس عدد المسائل: خمس عدد المسائل: خمس التصحيح - انكليزي

Part	Answer Key	Grade
	Question I	
	$A = \sqrt{80} - \sqrt{20} + \sqrt{5}$	
1	$A = 4\sqrt{5} - 2\sqrt{5} + \sqrt{5}$ 0.25 + 0.25	0.75
	$A = 3\sqrt{5}$	
	$A \times B = 3\sqrt{5} \times 5\sqrt{5} = 75$	
2a	$(2\sqrt{19}-1)(2\sqrt{19}+1)=76-1=75$ 0.25	0.75
	Then: $A \times B = (2\sqrt{19} - 1)(2\sqrt{19} + 1)$. The given table is a proportionality table 0.25	
2 b	$\frac{20}{5\sqrt{5}-5} = \frac{20}{5(\sqrt{5}-1)} = \frac{4}{\sqrt{5}-1} = \frac{4}{\sqrt{5}-1} \times \frac{\sqrt{5}+1}{\sqrt{5}+1} = 1 + \sqrt{5}$ (0.25 conjugate + 0.25 result)	0.5
	Question II	
	Let x be the number of red balls and y that of black balls. 0.25	
1a	x + y = 12	1
	x - 1 = 2(y + 1) 0.25	
1b	Then: $x - 2y = 3$ 0.25 Using the calculator: $x = 9$ et $y = 3$ 0.75 + 0.25	1
10	Using the calculator: $x = 9et y = 5$ 0.75 + 0.25 14 red balls and 11 black balls. 0.25	1
2	$\frac{14 \times 100}{25} = 56 \%$ 0.5 + 0.25	1
	Question III	
1	$S = \frac{b \times h}{2} = \frac{6 \times 8}{2} = 24$ 0.25 + 0.25	0.5
_	AM = AB - BM = 6 - x 0.25	
2	$S' = \frac{b \times h}{3} = \frac{(6 - x)x}{3} = \frac{6x - x^2}{3}$ 0.25	0.5
3a	2 2 2	0.5
Ja	$3(x-2)(x-4) = 3(x^2 - 4x - 2x + 8) = 3x^2 - 18x + 24$ 0.5	0.5
	S = 6S'	
	$24 = 6\left(\frac{6x - x^2}{2}\right)$	
3b		0.5
	$24 = 18x - 3x^2$ $3x^2 - 18x + 24 = 0$ 0.25	
	3(x-2)(x-4) = 0 gives $x = 2$ or $x = 4$.	
4a	$S' - \frac{9}{2} = \frac{6x - x^2}{2} - \frac{9}{2} = \frac{6x - x^2 - 9}{2} = \frac{-1}{2} (x - 3)^2.$ 0.25 + 0.25	0.5
	or expanding both sides. 0.25 + 0.25	
41	$S' - \frac{9}{2} = \frac{-1}{2} (x - 3)^2 \le 0.$ 0.25	0.5
4b		0.5
	then: $S' \le \frac{9}{2}$	
	\mathcal{L}	

	$a_{(AE)} = \frac{3+6}{3-0} = 3$	0.75	
3a	3 = 9 + b		1
Ja	b = 3 - 9 = -6	0.25	1
	Then: (AE) : $y = 3x - 6$	0.75 + 0.25	
	or by replacing the coordinates of both points A and E. In triangle BFE we have:	0.75 + 0.25	
3b	[BO] and [EA] are two medians intersecting at C.	0.25	0.5
	Then C is the center of gravity of this triangle. (Intersection point of the 3 medians)	0.25	0.5
	In the triangle BFE:	3,22	
3c	FM is the third median passing through C (the center of gravity)	0.25	0.25
	Then M is the midpoint of [BE].		
	In the triangle OBF; we have:		
	$OB = OF = 6$ and $\widehat{FOB} = 90^{\circ}$	0.25 + 0.25	
4	Then FBO is a right isosceles triangle at O		0.75
	so $OBF = 45^{\circ}$.		
	or: using the method of the acute angle formed between (AB) and the x-axis		
	Similarly we prove $OBE = 45^{\circ}$.	0.25	
5a	We have: $(CK)//(EB)$ then: $\widehat{EBK} = \widehat{CKF} = 90^{\circ}$ (corresponding angles). Then triangles	e CKB is	0.5
	right at K.	0.25	
	and: KBC = 45°. (Proved) then triangle CKB is also isosceles.	0.25	
5b	CKB is a right isosceles triangle then : $CK = \frac{CB}{\sqrt{2}} = 2\sqrt{2}$		0.5
	Or $\sin 45^\circ = \cdots$		
6	$\frac{FC}{FM} = \frac{2}{3}$ since C is the center of gravity of triangle FBE.		0.5
	or: Thales' theorem		
	or : by calculation		
Question V			
	N _		
			0.5
1	5 (C)		U.
	B 3 A		
2a	OA = ON (radii of the same circle), then triangle ONA is isosceles of vertex O.	0.5	0.5

	$\widehat{OAN} = \widehat{ANB} \text{ (alt - int)}$	0.25	
2b	$\widehat{OAN} = \widehat{ONA}$ (base angles of isosceles triangle)	0.25	0.75
	Then: $\widehat{ANB} = \widehat{ONA}$	0.25	
	[NA) is the bisector of \widehat{BNO}		
	ODN is a right triangle at D.		
	$ON^2 = OD^2 + DN^2$ (Pythagorean)	0.5	
3	$DN^2 = ON^2 - DO^2 = 5^2 - 3^2 = 25 - 9 = 16$		1
	DN = 4	0.25	
	BN = DN + DB = 4 + 5 = 9	0.25	
	In the two triangles BAN and OLA we have :		_
4a	$\widehat{AOL} = \widehat{ABN} = 90^{\circ}$	0.5	1
	$\widehat{OAN} = \widehat{ANB} $ (alt – int)	0.5	
	Then they are similar		
41	$\frac{OA}{BN} = \frac{OL}{AB} = \frac{LA}{AN}$ (ratio of similitude)	0.5	
4b	$OL \times BN = AO \times AB = 15.$	0.25	1
	$OL = \frac{15}{8N} = \frac{15}{9} = \frac{5}{3}$	0.25	
	OAF is an isosceles triangle since $OF = OA$ (radii of the same circle)		
	Then (OB) is a perpendicular bisector. (height in an isosceles triangle is also a perp. Bis)	0.25	
	In the two triangles OBF and OBA we have:		
	OF = OA (proved)		
5	BF = BA (Any point on the perpendicular bisector of a seg. is equidistant from its extremities)		0.75
	OB = OB (common side) then the two triangles are congruent.	0.25	
	Then: $\widehat{OFB} = \widehat{OAB} = 90^{\circ}$ (c.p.c.t)	0.25	
	(BF) is tangent to the circle (Being perpendicular to the radius at the point of tangency)		