دورة العام ٢٠١٩ العادية السبت ۱۰ حزيران ۲۰۱۹ مكيّفة

امتحانات الشهادة المتوسطة

وزارة التربية والتعليم العالي المديرية العامة للتربية دائرة الامتحانات الرسميّة عدد المسائل: خمس

مسابقة في مادة الرياضيات المدة: ساعتان

إرشادات عامة: - يسمح باستعمال آلة حاسبة غير قابلة للبرمجة أو اختزان المعلومات أو رسم البيانات.

- يستطيع المرشح الإجابة بالترتيب الذي يناسبه دون الالتزام بترتيب المسائل الواردة في المسابقة.

مسابقة في مادة الرياضيات

المدة: ساعتان

(إنكليزي)

••	••	••	•	• •	• •	••	•	••	•	• •	• •	•	• •	••	•	• •	••	• •	•	• •	•	••	٦:	v	١,	¥
																							•	قد		7

I - (2.5 points)

(Show all the steps of calculation).

- 1) Given $A = \sqrt{18} \sqrt{8} + \sqrt{50}$. Show that $A = 6\sqrt{2}$.
- 2) Given $B = \frac{1}{\sqrt{2} + 1}$.

 Show that $B = \sqrt{2} 1$.
- 3) Given $C = (\sqrt{2} + 1)^2 + 1$. Show that $C = 2\sqrt{2} + 4$.
- 4) Show that $\mathbf{B} \times \mathbf{A} \times \mathbf{C} = 24$.

II – (4 points)

1) Given
$$P(x) = (2x+1)^2 - (2x^2 + 9x + 4)$$

a. Verify that
$$(2x+1)(x+4) = 2x^2 + 9x + 4$$
.

b. Show that
$$P(x) = (2x+1)(x-3)$$
.

c. Solve the equation
$$(2x+1)(x-3)=0$$
.

2) Let
$$H(x) = \frac{(2x+1)(x-3)}{4x^2-1}$$
.

a. Verify that
$$4x^2 - 1 = (2x - 1)(2x + 1)$$

b. For what values of x, is H(x) defined?

c. Show that
$$\mathbf{H}(x) = \frac{x-3}{2x-1}$$

3) In the adjacent figure:

ABC is a **right triangle at A** so that :

$$AB = x - 3$$
 and $BC = 2x - 1$ where $x > 3$.

a. Verify that
$$\widehat{BCA} = \frac{x-3}{2x-1}$$

b. Is there a value of
$$x$$
 so that $\sin 30^0 = \frac{x-3}{2x-1}$.

III – (3 points)

1) Solve the following system:
$$\begin{cases} x + y = 16 \\ 2x + 3y = 38 \end{cases}$$

2) The following table represents the distribution of electronic games in a shop according to their prices:

Price of an electronic game	3 000	4 000	5 000	6 000
(in LL)				
Number of electronic games	9	m	15	n
Total price	3 000 × 9	4 000× m		

- **a.** Complete the table.
- **b.** The total price of all the electronic games in this shop is:

178 000 LL.

• Show that this information is modeled by the following equation:

$$2m + 3n = 38$$
.

- c. Knowing that the total number of electronic games in this shop is 40.
 - <u>Show that</u> this information is modeled by the following equation:

$$m + n = 16$$
.

- **d.** Using the two equations in parts b and c:
 - Calculate m and n.

IV- (5.5 points)

In an orthonormal system of axes x'Ox and y'Oy, given the points

$$A(0;-2)$$
, $B(-4;0)$ and $C(0;3)$.

- 1) a. Plot the points A, B and C.
 - **b.** Show that the equation of the line (AB) is $y = \frac{-1}{2}x 2$.
- 2) a. Calculate CA and CB.
 - **b.** Show that the triangle **ABC** is **isosceles** of vertex C.
- 3) Let **H** be the point with coordinates (-2;-1).
 - a. Verify that H is the midpoint of [AB].
 - b. Determine the equation of the perpendicular bisector of [AB].
- 4) Let (C') be the circle of diameter [BC].

Show that O and H are on the same circle (C').

- a. Verify that $I\left(-2;\frac{3}{2}\right)$ is the center of the circle (C').
- 5) Show that (IH) is parallel to the y-axis.

V- (5 points)

In the adjacent figure:

- ABCD is a square of side 4
- M is the midpoint of [BC]
- (AM) intersects (DC) at N

- 1) Use the Pythagorean theorem in the right triangle ABM to show that $AM = 2\sqrt{5}$.
- 2) a. <u>Use</u> Thales' theorem to show that $\frac{NC}{ND} = \frac{1}{2}$
 - b. Deduce that C is the midpoint of [DN].
- 3) Let (d) be the perpendicular through A to (AM).

The lines (d) and (CD) intersect at Q.

- **b.** Show that the two triangles **DAQ** and **DNA** are **similar**.
- c. Deduce that $\mathbf{DQ} \times \mathbf{DN} = \mathbf{16}$.
- **d.** Show that $\mathbf{DQ} = 2$.
- 4) Show that the triangle **AQM** is a **right isosceles triangle** at A.