دورة العام ٢٠١٩ العاديّة	امتحانات الشهادة الثانوية العامة	وزارة التربية والتعليم العالي
الثلاثاء ١٨ حزيران ٢٠١٩	فرع: الآداب والإنسانيات	المديرية العامة للتربية
مكيّفة	-	دائرة الامتحانات الرسمية
	مسابقة في مادة الرياضيات	عدد المسائل: ثلاث
	المدة مسلحة	

ملاحظة: - يسمح باستعمال آلة حاسبة غير قابلة للبرمجة او اختزان المعلومات او رسم البيانات. - يستطيع المرشّح الإجابة بالترتيب الذي يناسبه (دون الالتزام بترتيب المسائل الواردة في المسابقة).

مسابقة في مادة الرياضيات

المدة: ساعة

(انکلیزي)

•••••	سم:	71
	قم:	الر

I- (5 points)

1) **Solve** the following system:

$$\begin{cases} 3x + 2y = 6500 \\ 2x + 3y = 6000 \end{cases}$$

- 2) Nabil and Sami buy croissants from the same bakery.
 - Nabil paid 65 000 LL for:
 - ✓ 30 chocolate croissants
 - ✓ 20 cheese croissants.
 - Sami paid 60 000 LL for:
 - ✓ 20 chocolate croissants
 - ✓ 30 cheese croissants.
 - a- **Write** a system of two equations with two unknowns modeling the given situation.
 - b- Calculate the price of a chocolate croissant and the price of one cheese croissant.
 - c- The bakery **offers a 20% discount** on the price of the chocolate croissants only.

Nabil has 100 000 LL.

- i. **Verify that** the price of <u>one chocolate croissant</u> during this discount is **1200 LL**.
- ii. Can Nabil buy 50 chocolate croissants and 45 cheese croissants? **Justify**.

II- (5 points)

A survey is done on a population of **70 men** and **30 women** about their **preferred mean of transportation.**

The person should select only <u>one mean of transportation</u> among: car, bike or bus.

The results are shown in the following table:

	Car	Bike	Bus	Total
Men	35	10		70
Women	15		10	
Total		15		100

- 1) **Copy** and **complete** the table above.
- 2) A person is selected randomly from this population.

Consider the following events:

- C: "The selected person prefers the car"
- B: "The selected person prefers the bike"
- M: "The selected person is a man"
- a- **Determine** the following probabilities:
 - -P(M)
 - $P(C \cap M)$
 - $_{\text{-}}\ P\!\left(\overline{C}\!\cap\!\overline{B}\right)$

b- Verify that
$$P(B \cup M) = \frac{3}{4}$$

c- The selected person prefers the car.

Calculate the probability that this person is <u>a woman</u>.

III- (10 points)

Consider the function f defined over $]-\infty;-1[\cup]-1;+\infty[$ as:

$$f(x) = \frac{2x^2 + 5x + 2}{x + 1}$$

Denote by (C) the representative curve of f in an orthonormal system $(0; \vec{i}, \vec{j})$.

- 1) **Determine** $\lim_{\substack{x \to -1 \\ x < -1}} f(x)$ and $\lim_{\substack{x \to -1 \\ x > -1}} f(x)$.
- 2) **Deduce** an equation of an asymptote (d) to (C).
- 3) a- **Determine** $\lim_{x \to -\infty} f(x)$ and $\lim_{x \to +\infty} f(x)$.

b- Verify that
$$f(x) = 2x + 3 - \frac{1}{x+1}$$
.

d- **Show that** the line (D) with equation:

$$y = 2x + 3$$
 is an asymptote to (C).

- 4) Calculate f'(x).
- 5) **Verify** that f'(x) > 0.
- 6) Complete the table of variations of $\,f\,$.

X	-∞	-1	+∞
f'			
f			

7) a- **Copy** and **complete** the following table:

X	- 3	- 1.5	0	1
f(x)	-2.5			

b- **Determine** the abscissas of the two points of intersection of (C) and the x-axis.

4

- c- **Draw** (d), (D), and (C).
- d- **Solve graphically**: f(x) < 2.