امتحانات الشهادة الثانوية العامة فرع: علوم الحياة

وزارة التربية والتعليم العالي المديريّــة العامة للتربية دائرة الامتحانات الرسمية

N. C.		- 1 10 11 11 11
لاسم:	مسابقة في مادة الرياضيات	عدد المسائل: اربع
*1		Ç. 3 · 1 · 1
ر قم:	المدة: ساعتان	
اراتم:	المدة: مناحتان	

ملاحظة: - يسمح باستعمال آلة حاسبة غير قابلة للبرمجة او اختزان المعلومات او رسم البيانات. - يستطيع المرشّح الإجابة بالترتيب الذي يناسبه (دون الالتزام بترتيب المسائل الواردة في المسابقة).

I- (4 points)

In the space referred to a direct orthonormal system $(O; \vec{i}, \vec{j}, \vec{k})$, given the points A(4 , 1 , 4),

B(1, 0, 1), E(3, -1, 1) and the plane (P) with equation x + 2y + 3z - 4 = 0.

- 1) Show that the point E is the orthogonal projection of point A on plane (P).
- 2) a- Determine an equation of the plane (Q) determined by A, B and E. b- Verify that the two planes (P) and (Q) are perpendicular.
- 3) Let (d) be the line of intersection of (P) and (Q).

Show that a system of parametric equations of (d) is $\begin{cases} x = -2t + 1 \\ y = t \\ z = 1 \end{cases}$ (t \in \mathbb{R}).

4) Consider, in plane (P), the circle (C) with center E and radius $\sqrt{5}$. Show that the line (d) intersects the circle (C) in two points whose coordinates are to be determined.

II- (4 points)

U and V are two urns such that:

• V contains four cards holding the numbers 8, 8, 5 and 4.

U V

One card is selected randomly from urn U:

- If the selected card from U holds the number 0, then two cards are selected randomly and simultaneously from urn V;
- If the selected card from U does not hold the number 0, then three cards are selected randomly and simultaneously from urn V.

Consider the following events:

A: "The selected card from urn U holds the number 0"

S: "The sum of the numbers held on the selected cards from urn V is even"

1) a- Calculate the probabilities P(S/A) and $P(S \cap A)$.

b- Verify that $P(S \cap \overline{A}) = \frac{1}{6}$ and calculate P(S).

- 2) The sum of the numbers held on the selected cards from urn V is even. Calculate the probability that the selected card from urn U does not hold the number 0.
- 3) Let X be the random variable equal to the product of numbers held by the cards selected from the two urns U and V.

Calculate P(X = 0) and deduce $P(X \le 160)$.

III- (4 points)

In the complex plane referred to a direct orthonormal system $(O; \vec{u}, \vec{v})$, consider the points M and M' with respective affixes z and z' such that $z' = (1 + i) \overline{z}$.

- 1) In this part, let $z = e^{i\frac{\pi}{3}}$.
 - a- Write z' in exponential form.
 - b- Verify that $(z')^6$ is pure imaginary.
- 2) a- Show that $|z'| = \sqrt{2}|z|$.
 - b- Deduce that, when M moves on the circle with center O and radius $\sqrt{2}$, M' moves on a circle whose center and radius are to be determined.
- 3) Let z = x + iy and z' = x' + iy', where x, y, x' and y' are real numbers.
 - a- Express x' and y' in terms of x and y.
 - b- For all $z \neq 0$, denote by N the point with affix \overline{z} . Prove that the triangle ONM' is right isosceles with principal vertex N.

IV- (8 points)

Consider the function f defined over $]0,+\infty[$ as $f(x)=2x(1-\ln x)$. Denote by (C) its representative curve in an orthonormal system $(O;\vec{i},\vec{j})$.

- 1) Determine $\lim_{\substack{x\to 0\\x>0}} f(x)$ and $\lim_{x\to +\infty} f(x)$.
- 2) a- Let A be the point of intersection of (C) with the x-axis. Determine the coordinates of A.
 - b- Show that $f'(x) = -2 \ln x$ and set up the table of variations of f.
 - c- Determine an equation of the tangent (T) to (C) at A.

In the adjacent figure:

- (C) is the representative curve of f
- (T) is the tangent to (C) at A
- (d) is the line with equation x = 1
- B(1, 2e 2) is the point of intersection of (d) and (T).
- 3) a- Show that f has, over $]1,+\infty[$, an inverse function g whose domain of definition is to be determined.
 - b- Set up the table of variation of g.
 - c- Copy (C), then draw (C'), the representative curve of g in the same system.
- 4) a- Using integration by parts, determine $\int x \ln(x) dx$.

c- Calculate the area of the shaded region bounded by (C), (T) and (d).

أسس تصحيح مسابقة الرياضيات

Q.I	Answer key	4 pts
	$x_E + 2(y_E) + 3(z_E) - 4 = 0, 3 - 2 + 3 - 4 = 0$ then $E \in (P)$.	
1	$\overrightarrow{EA}(1,2,3) = \overrightarrow{n_P}$ then E is the orthogonal projection of point A on plane (P).	
	x = n + 4	
1	OR: (AE): $\begin{cases} y = 2n + 1 ; E(n+4; 2n+1; 3n+4) ; x_E + 2(y_E) + 3(z_E) - 4 = 0 \end{cases}$	1
	z = 3n + 4	
	then $n = -1$ so, $E(3; -1; 1)$	
	Let $M(x, y, z) \in (Q)$	
2.a	$\overrightarrow{AM}.(\overrightarrow{AB} \wedge \overrightarrow{AE}) = 0$	
	$\begin{vmatrix} x-4 & y-1 & z-4 \\ -3 & -1 & -3 \\ -1 & -2 & -3 \end{vmatrix} = 0$	1
	$\begin{vmatrix} -3 & -1 & -3 \end{vmatrix} = 0$	
	-1 -2 -3	
	Then (Q): $3x + 6y - 5z + 2 = 0$.	
2.b	$\overrightarrow{n_Q}$. $\overrightarrow{n_P} = 3 + 12 - 15 = 0$. Then the two planes (P) and (Q) are perpendicular.	0.5
	For every $M(-2t + 1; t; 1) \in (d)$	0.5
3	$x_M + 2(y_M) + 3(z_M) - 4 = 0$ then $M \in (P)$	0.5
	$3x_M + 6y_M - 5z_M + 2 = 0 \text{ then } M \in (\mathbf{Q})$ $M(-2t + 1; t; 1) \overrightarrow{EM} (-2t - 2; t + 1; 0)$	
4	$EM = \sqrt{5}; (-2t-2)^2 + (t+1)^2 = 5 \text{ then } t = 0 \text{ or } t = -2$	1
	Therefore B(1;0;1) (5;-2;1).	1
~ ==		
Q.II	Answer key	4 pts
Q.II	Answer key $P(S/A) = \frac{C_3^2}{1} = \frac{1}{2}$	4 pts
1.a	$P(S/A) = \frac{C_3^2}{C_4^2} = \frac{1}{2},$	4 pts
	$P(S/A) = \frac{C_3^2}{C_4^2} = \frac{1}{2},$	
1.a	$P(S/A) = \frac{C_3^2}{C_4^2} = \frac{1}{2},$	1
	$P(S/A) = \frac{C_3^2}{C_4^2} = \frac{1}{2},$ $P(S \cap A) = P(S/A) \times P(A) = \frac{1}{2} \times \frac{1}{3} = \frac{1}{6}$ $P(S \cap \overline{A}) = P(S/\overline{A}) \times P(\overline{A}) = \frac{C_3^3}{C_4^3} \times \frac{2}{3} = \frac{1}{6}$	
1.a	$P(S/A) = \frac{C_3^2}{C_4^2} = \frac{1}{2},$ $P(S \cap A) = P(S/A) \times P(A) = \frac{1}{2} \times \frac{1}{3} = \frac{1}{6}$ $P(S \cap \overline{A}) = P(S/\overline{A}) \times P(\overline{A}) = \frac{C_3^3}{C_4^3} \times \frac{2}{3} = \frac{1}{6}$ $P(S) = P(S \cap A) + P(S \cap \overline{A}) = \frac{1}{3}$	1
1.a	$P(S/A) = \frac{C_3^2}{C_4^2} = \frac{1}{2},$ $P(S \cap A) = P(S/A) \times P(A) = \frac{1}{2} \times \frac{1}{3} = \frac{1}{6}$ $P(S \cap \overline{A}) = P(S/\overline{A}) \times P(\overline{A}) = \frac{C_3^3}{C_4^3} \times \frac{2}{3} = \frac{1}{6}$ $P(S) = P(S \cap A) + P(S \cap \overline{A}) = \frac{1}{3}$	1
1.a	$P(S/A) = \frac{C_3^2}{C_4^2} = \frac{1}{2},$ $P(S \cap A) = P(S/A) \times P(A) = \frac{1}{2} \times \frac{1}{3} = \frac{1}{6}$ $P(S \cap \overline{A}) = P(S/\overline{A}) \times P(\overline{A}) = \frac{C_3^3}{C_4^3} \times \frac{2}{3} = \frac{1}{6}$	1
1.a	$P(S/A) = \frac{C_3^2}{C_4^2} = \frac{1}{2},$ $P(S \cap A) = P(S/A) \times P(A) = \frac{1}{2} \times \frac{1}{3} = \frac{1}{6}$ $P(S \cap \overline{A}) = P(S/\overline{A}) \times P(\overline{A}) = \frac{C_3^3}{C_4^3} \times \frac{2}{3} = \frac{1}{6}$ $P(S) = P(S \cap A) + P(S \cap \overline{A}) = \frac{1}{3}$ $P(\overline{A}/S) = \frac{P(S \cap \overline{A})}{P(S)} = \frac{1}{\frac{6}{1}} = \frac{1}{2}$	1
1.a	$P(S/A) = \frac{C_3^2}{C_4^2} = \frac{1}{2},$ $P(S \cap A) = P(S/A) \times P(A) = \frac{1}{2} \times \frac{1}{3} = \frac{1}{6}$ $P(S \cap \overline{A}) = P(S/\overline{A}) \times P(\overline{A}) = \frac{C_3^3}{C_4^3} \times \frac{2}{3} = \frac{1}{6}$ $P(S) = P(S \cap A) + P(S \cap \overline{A}) = \frac{1}{3}$ $P(\overline{A}/S) = \frac{P(S \cap \overline{A})}{P(S)} = \frac{1}{\frac{6}{1}} = \frac{1}{2}$ $P(X = 0) = \frac{1}{3} \times 1 = \frac{1}{3}$	1
1.a 1.b	$P(S/A) = \frac{C_3^2}{C_4^2} = \frac{1}{2},$ $P(S \cap A) = P(S/A) \times P(A) = \frac{1}{2} \times \frac{1}{3} = \frac{1}{6}$ $P(S \cap \overline{A}) = P(S/\overline{A}) \times P(\overline{A}) = \frac{C_3^3}{C_4^3} \times \frac{2}{3} = \frac{1}{6}$ $P(S) = P(S \cap A) + P(S \cap \overline{A}) = \frac{1}{3}$ $P(\overline{A}/S) = \frac{P(S \cap \overline{A})}{P(S)} = \frac{1}{\frac{1}{3}} = \frac{1}{2}$ $P(X = 0) = \frac{1}{3} \times 1 = \frac{1}{3}$ $P(X \le 160) = P(X = 0) + P(X = 160)$	1 1
1.a	$P(S/A) = \frac{C_3^2}{C_4^2} = \frac{1}{2},$ $P(S \cap A) = P(S/A) \times P(A) = \frac{1}{2} \times \frac{1}{3} = \frac{1}{6}$ $P(S \cap \overline{A}) = P(S/\overline{A}) \times P(\overline{A}) = \frac{C_3^3}{C_4^3} \times \frac{2}{3} = \frac{1}{6}$ $P(S) = P(S \cap A) + P(S \cap \overline{A}) = \frac{1}{3}$ $P(\overline{A}/S) = \frac{P(S \cap \overline{A})}{P(S)} = \frac{1}{\frac{6}{1}} = \frac{1}{2}$ $P(X = 0) = \frac{1}{3} \times 1 = \frac{1}{3}$	1
1.a 1.b	$P(S/A) = \frac{C_3^2}{C_4^2} = \frac{1}{2},$ $P(S \cap A) = P(S/A) \times P(A) = \frac{1}{2} \times \frac{1}{3} = \frac{1}{6}$ $P(S \cap \overline{A}) = P(S/\overline{A}) \times P(\overline{A}) = \frac{C_3^3}{C_4^3} \times \frac{2}{3} = \frac{1}{6}$ $P(S) = P(S \cap A) + P(S \cap \overline{A}) = \frac{1}{3}$ $P(\overline{A}/S) = \frac{P(S \cap \overline{A})}{P(S)} = \frac{1}{\frac{6}{1}} = \frac{1}{2}$ $P(X = 0) = \frac{1}{3} \times 1 = \frac{1}{3}$ $P(X \le 160) = P(X = 0) + P(X = 160)$ $= \frac{1}{3} + \frac{1}{3} \times \frac{C_2^1 C_1^1 C_1^1}{C_4^3}$	1 1
1.a 1.b	$P(S/A) = \frac{C_3^2}{C_4^2} = \frac{1}{2},$ $P(S \cap A) = P(S/A) \times P(A) = \frac{1}{2} \times \frac{1}{3} = \frac{1}{6}$ $P(S \cap \overline{A}) = P(S/\overline{A}) \times P(\overline{A}) = \frac{C_3^3}{C_4^3} \times \frac{2}{3} = \frac{1}{6}$ $P(S) = P(S \cap A) + P(S \cap \overline{A}) = \frac{1}{3}$ $P(\overline{A}/S) = \frac{P(S \cap \overline{A})}{P(S)} = \frac{1}{\frac{6}{1}} = \frac{1}{2}$ $P(X = 0) = \frac{1}{3} \times 1 = \frac{1}{3}$ $P(X \le 160) = P(X = 0) + P(X = 160)$ $= \frac{1}{3} + \frac{1}{3} \times \frac{C_2^1 C_1^1 C_1^1}{C_4^3}$ $= \frac{5}{12}$	1 1 1
1.a 1.b 2	$P(S/A) = \frac{C_3^2}{C_4^2} = \frac{1}{2},$ $P(S \cap A) = P(S/A) \times P(A) = \frac{1}{2} \times \frac{1}{3} = \frac{1}{6}$ $P(S \cap \overline{A}) = P(S/\overline{A}) \times P(\overline{A}) = \frac{C_3^3}{C_4^3} \times \frac{2}{3} = \frac{1}{6}$ $P(S) = P(S \cap A) + P(S \cap \overline{A}) = \frac{1}{3}$ $P(\overline{A}/S) = \frac{P(S \cap \overline{A})}{P(S)} = \frac{1}{\frac{6}{1}} = \frac{1}{2}$ $P(X = 0) = \frac{1}{3} \times 1 = \frac{1}{3}$ $P(X \le 160) = P(X = 0) + P(X = 160)$ $= \frac{1}{3} + \frac{1}{3} \times \frac{C_2^1 C_1^1 C_1^1}{C_4^3}$ $= \frac{5}{12}$ Answer key	1 1 1 4 pts
1.a 1.b	$P(S/A) = \frac{c_3^2}{c_4^2} = \frac{1}{2},$ $P(S \cap A) = P(S/A) \times P(A) = \frac{1}{2} \times \frac{1}{3} = \frac{1}{6}$ $P(S \cap \overline{A}) = P(S/\overline{A}) \times P(\overline{A}) = \frac{c_3^3}{c_4^3} \times \frac{2}{3} = \frac{1}{6}$ $P(S) = P(S \cap A) + P(S \cap \overline{A}) = \frac{1}{3}$ $P(\overline{A}/S) = \frac{P(S \cap \overline{A})}{P(S)} = \frac{\frac{1}{6}}{\frac{1}{3}} = \frac{1}{2}$ $P(X = 0) = \frac{1}{3} \times 1 = \frac{1}{3}$ $P(X \le 160) = P(X = 0) + P(X = 160)$ $= \frac{1}{3} + \frac{1}{3} \times \frac{c_2^1 c_1^1 c_1^1}{c_4^3}$ $= \frac{5}{12}$ Answer key $z' = \sqrt{2}e^{i\frac{\pi}{4}}e^{i\frac{-\pi}{3}} = \sqrt{2}e^{i\frac{-\pi}{12}}$	1 1 1
1.a 1.b 2 3 Q.III 1.a	$P(S/A) = \frac{C_3^2}{c_4^2} = \frac{1}{2},$ $P(S \cap A) = P(S/A) \times P(A) = \frac{1}{2} \times \frac{1}{3} = \frac{1}{6}$ $P(S \cap \overline{A}) = P(S/\overline{A}) \times P(\overline{A}) = \frac{C_3^3}{C_4^3} \times \frac{2}{3} = \frac{1}{6}$ $P(S) = P(S \cap A) + P(S \cap \overline{A}) = \frac{1}{3}$ $P(\overline{A}/S) = \frac{P(S \cap \overline{A})}{P(S)} = \frac{1}{\frac{6}{1}} = \frac{1}{2}$ $P(X = 0) = \frac{1}{3} \times 1 = \frac{1}{3}$ $P(X \le 160) = P(X = 0) + P(X = 160)$ $= \frac{1}{3} + \frac{1}{3} \times \frac{C_2^1 C_1^1 C_1^1}{C_4^3}$ $= \frac{5}{12}$ Answer key $z' = \sqrt{2}e^{i\frac{\pi}{4}}e^{i\frac{-\pi}{3}} = \sqrt{2}e^{i\frac{-\pi}{12}}$ $(z')^6 = (\sqrt{2}e^{i\frac{1\pi}{2}})^6 = 8e^{i\frac{-\pi}{2}} = -8i \text{ is pure imaginary}$	1 1 1 4 pts 0.5
1.a 1.b 2	$P(S/A) = \frac{c_3^2}{c_4^2} = \frac{1}{2},$ $P(S \cap A) = P(S/A) \times P(A) = \frac{1}{2} \times \frac{1}{3} = \frac{1}{6}$ $P(S \cap \overline{A}) = P(S/\overline{A}) \times P(\overline{A}) = \frac{c_3^3}{c_4^3} \times \frac{2}{3} = \frac{1}{6}$ $P(S) = P(S \cap A) + P(S \cap \overline{A}) = \frac{1}{3}$ $P(\overline{A}/S) = \frac{P(S \cap \overline{A})}{P(S)} = \frac{\frac{1}{6}}{\frac{1}{3}} = \frac{1}{2}$ $P(X = 0) = \frac{1}{3} \times 1 = \frac{1}{3}$ $P(X \le 160) = P(X = 0) + P(X = 160)$ $= \frac{1}{3} + \frac{1}{3} \times \frac{c_2^1 c_1^1 c_1^1}{c_4^3}$ $= \frac{5}{12}$ Answer key $z' = \sqrt{2}e^{i\frac{\pi}{4}}e^{i\frac{-\pi}{3}} = \sqrt{2}e^{i\frac{-\pi}{12}}$	1 1 1 4 pts

2.a	$ \mathbf{z}' = 1 + \mathbf{i} \overline{\mathbf{z}} \; ; \mathbf{z}' = \sqrt{2} \mathbf{z} $	0.5
2.b	$OM = \sqrt{2}$; $ z' = \sqrt{2} z $; $OM' = \sqrt{2}OM = 2$ Then M' moves on a circle of center O and radius 2.	1
3.a	x' + iy' = (1 + i)(x - iy) = x + y + i(x - y) then $x' = x + y$ and $y' = x - y$.	0.5
3.b	$N(\overline{z})$ then $N(x; -y)$; $M'(z')$ then $M'(x + y; x - y)$ $\overrightarrow{ON}(x; -y)$; $\overrightarrow{NM'}(y; x)$ $ON = N M' = \sqrt{x^2 + y^2}$ and \overrightarrow{ON} . $\overrightarrow{NM'} = xy - yx = 0$. Then ONM' is right isosceles of vertex N. $OR: \frac{z'}{\overline{z}} = 1 + i = \sqrt{2}e^{i\frac{\pi}{4}}$, then $OM' = \sqrt{2}ON$ $(\overrightarrow{ON}; \overrightarrow{OM'}) = \frac{\pi}{4}[2\pi]$ Then ONM' is right isosceles of vertex N. $OR: \frac{z' - \overline{z}}{\overline{z}} = i$ then ONM' is right isosceles of vertex N.	1
Q.IV	Answer key	8 pts
1	$\lim_{\substack{x \to 0 \\ x > 0}} f\left(x\right) = \lim_{\substack{x \to 0 \\ x > 0}} 2x - 2x \ln x = 0 \text{ and } \lim_{x \to +\infty} f\left(x\right) = \lim_{x \to +\infty} 2x (1 - \ln x) = -\infty$	
2.a	$2x(1 - \ln x) = 0$; $x = 0$ rej $1 - \ln x = 0$; $\ln x = 1$ then $x = e$ hence $A(e; 0)$	0.5
2.b	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1
2.c	f'(e) = -2 (T): $y = -2x + 2e$	0.5
3.a	f is continuous and strictly decreasing over]1;+ ∞ [then f admits an inverse function g. $D_g =]-\infty;2[$	0.5
3.b	$ \begin{array}{c cccc} x & -\infty & 2 \\ \hline g'(x) & - & \\ g(x) & +\infty & 1 \end{array} $	1
3.c	(C) 4 3 3 4 4 -3 -2 -1 0 1 2 3 4 (C) -2 (C)	1.5
4. a	$\int x \ln(x) dx = \frac{x^2}{2} \ln x - \int \frac{x}{2} dx = \frac{x^2}{2} \ln x - \frac{x^2}{4} + C$	
4.b	$\int_{1}^{e} f(x) dx = \int_{1}^{e} 2x dx - 2 \int_{1}^{e} x \ln x dx = x^{2} - 2 \left(\frac{x^{2}}{2} \ln x - \frac{x^{2}}{4} \right) = \frac{3x^{2}}{2} - x^{2} \ln x \right]_{1}^{e} = \frac{e^{2} - 3}{2}$	0.5
4.c	Area = $\frac{(e-1)(2e-2)}{2} - \int_{1}^{e} f(x)dx = e^2 - 2e + 1 - \frac{e^2 - 3}{2} = \frac{e^2 - 4e + 5}{2} = 0.758u^2$	0.5