وزارة التربية والتعليم العالي المديرية العامة للتربية دائرة الامتحانات الرسمية

إرشادات عامة: - يسمح باستعمال آلة حاسبة غير قابلة للبرمجة أو اختزان المعلومات أو رسم البيانات. - يستطيع المرشح الإجابة بالترتيب الذي يناسبه دون الالتزام بترتيب المسائل الواردة في المسابقة.

عدد المسائل: خمسة

مسابقة في مادة الرياضيات

المدة: ساعتان

(باللغة الإنكليزية)

•	••	•	•	• •	•	••	•	• (••	• (••	•	••	•	• •	•	•	• •	•	•	••	•	•	••	•	• •	•	م:	u	1	וע
																												٠,	ق		ľ

I - (3 points)

In the table below, only one of the proposed answers to each question is correct. Write down the number of the question and give, **with justification**, its corresponding answer.

Nº	Questions	Proposed answers									
11	Questions	a	b	c							
1	A car costs 15 000 000 LL . After a reduction of 11%, its price becomes	1 650 000 LL	13 350 000 LL	16 650 000 LL							
2	If $(\sqrt{2}-1)x = 1$ then $x =$	$\sqrt{2}$	1	$\sqrt{2}+1$							
3	n is a non-zero real number, $\frac{n}{2} - \frac{n}{2} \times 3 =$	3	-n	0							
4	ABC is a right triangle at B such that: BAC = y and BCA = 2y where y is a real number. The value of cos BAC is	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$							

II - (3.5 points)

Given
$$A(x) = 2x^2 - 6x - (x-3)(x-1)$$
.

- 1) a. Show that A(x) = (x+1)(x-3).
 - **b. Solve** the equation A(x) = 0.
- 2) **Verify** that $A(x) = x^2 2x 3$.
- **3)** The grades of students, in mathematics, are given in the following table. (x *is a natural number*)

Grades	4	9	12	19	Total
Number of students	1	\mathbf{x}^2	X	1	$x^2 + x + 2$

Calculate x, knowing that the average (mean) of the grades is 10.

III - (3 points)

- 1) Solve, showing all the steps of calculation, the following system: $\begin{cases} x 2y = 0 \\ 3y x = 6. \end{cases}$
- 2) In a class, the number of boys is double that of girls.

If 2 girls leave the class, the number of boys becomes triple that of the girls.

The teacher confirms that there are 18 students in this class. Is he right? Justify.

IV - (5.5 points)

In an orthonormal system of axes x'Ox and y'Oy, given the points F(0;4) and B(-2;2).

Let (d) be the line with equation y = x + 4.

- 1) Plot the points F and B.
- 2) Show that F and B are two points on (d), then draw (d).
- 3) Let H be the point of coordinates (-1;3).
 - **a.** Verify that H is the midpoint of [BF].
 - **b.** Show that the equation of (d'), the perpendicular bisector of [BF],
 - is y = -x + 2.
- **4) a.** Show that (OB) and (d') are parallel.
 - **b.** Show that the triangle OBF is right isosceles at B.
- 5) Let (C) be the circle circumscribed about triangle OBF.

Show that the point E(0; 2) is the center of circle (C), and calculate its radius.

6) Let K be the point of coordinates (2; 2) and L(2; 0) the point of intersection of (d') and x'Ox.

Show that K is a point of circle (C), and that (LK) is tangent to circle (C).

V - (5 points)

In the adjacent figure:

• (C) is a semicircle with center O, diameter [AB] and radius 2 cm.

- E is the symmetric of O with respect to B.
- 1) Reproduce the figure.

5) T is the point so that
$$\overrightarrow{FT} = \overrightarrow{LE}$$
.

The parallel through T to (OF) intersects [EF] at R and [LE] at G.

a. Show that (TG) is perpendicular to (EF).

b. Show that the two triangles FLE and GRE are similar.

c. Deduce that
$$\frac{EG}{ER} = \frac{2\sqrt{3}}{3}$$
.

وزارة التربية والتعليم العالي المديرية العامة للتربية دائرة الامتحانات الرسمية

إرشادات عامة: - يسمح باستعمال آلة حاسبة غير قابلة للبرمجة أو اختزان المعلومات أو رسم البيانات. - يستطيع المرشح الإجابة بالترتيب الذي يناسبه دون الالتزام بترتيب المسائل الواردة في المسابقة.

عدد المسائل: خمسة

مسابقة في مادة الرياضيات

المدة: ساعتان

(باللغة الإنكليزية)

•	••	•	• •	••	•	• •	•	• •	••	•	• •	••	•	•	• •	 •	•	• •	•	•	• •	•	• •	•	• •	•	•	ىم	ٰ بد	¥	•
																												نم	ŝ	ـر	1

I - (3 points)

Verify that the answers to the following questions are correct

Nº	Questions	Answers
1	A car costs 15 000 000 LL . After a reduction of 11%, its price becomes	13 350 000 LL
2	If $(\sqrt{2}-1)x = 1$ then $x =$	$\sqrt{2}+1$
3	n is a non-zero real number, $\frac{n}{2} - \frac{n}{2} \times 3 =$	-n
4	ABC is a right triangle at B such that: BAC = y and BCA = 2y where y is a real number. The value of $\cos BAC$ is	$\frac{\sqrt{3}}{2}$

II - (3.5 points)

Given
$$A(x) = 2x^2 - 6x - (x-3)(x-1)$$
.

- 1) a. Show that A(x) = (x+1)(x-3).
 - **b. Solve** the equation A(x) = 0.
- 2) **Verify** that $A(x) = x^2 2x 3$.
- **3)** The grades of students, in mathematics, are given in the following table. (x *is a natural number*)

Grades	4	9	12	19	Total
Number of students	1	x ²	X	1	$x^2 + x + 2$

- **a. Show that** the average is written in the form $\overline{x} = \frac{9x^2 + 12x + 23}{x^2 + x + 2}$
- **b.** Calculate x, knowing that the average (mean) of the grades \overline{X} is 10.

III - (3 points)

1) Solve, showing all the steps of calculation, the following system: $\begin{cases} x - 2y = 0 \\ 3y - x = 6. \end{cases}$

- 2) In a class:
 - The number of boys is double that of girls.
 - If 2 girls leave the class, the number of boys becomes triple that of the girls.
 - **a.** Let x be the number of boys and y the number of girls

Show that the previous informations can be translated by the given system in question 1).

b. Determine the number of students of this class

IV - (5.5 points)

In an orthonormal system of axes x'Ox and y'Oy,

Given the points F(0; 4) and B(-2; 2).

Let (d) be the line with equation y = x + 4.

- 1) **Plot** the points F and B.
- 2) a. Show that F and B are two points on (d)
 - **b. Draw** the line (d).
- 3) Let H be the point of coordinates (-1;3).
 - **a.** Verify that H is the midpoint of [BF].
 - **b. Show** that the equation of (d'), the perpendicular bisector of [BF],

is
$$y = -x + 2$$
.

- 4) a. Show that (OB) and (d') are parallel.
 - **b. Show that** (OB) is perpendicular to (BF).
 - c. Calculate BO and BF
 - **d. Deduce that** the triangle OBF is right isosceles at B.
- **5**) Let (C) be the circle circumscribed about triangle OBF.
 - **a. Show that** the point E(0; 2) is the center of circle (C).
 - **b.** Calculate its radius.
- 6) Let K be the point of coordinates (2;2) and L(2;0) the point of intersection of (d') and x'Ox.
 - **a. Show that** K is a point of circle (C).
 - **b. Show that** (LK) is tangent to circle (C).

V - (5 points)

In the figure below:

• (C) is a semicircle with center O, diameter [AB] and radius 2 cm.

• F is a point on (C) so that BF = 2 cm.

• E is the symmetric of O with respect to B.

1) Reproduce the figure.

2) Verify that $AF = 2\sqrt{3}$ cm using the triangle AFB.

3) Show that OEF is a right triangle at F.

4) Let L be the midpoint of [OB].

Show that (FL) is perpendicular to (OB).

5) Let T be the fourth vertex of the rectangle FLET.

The parallel through T to (OF) intersects [EF] at R and [LE] at G.

a. Show that (TG) is perpendicular to (EF).

b. Show that the two triangles FLE and GRE are similar.