دورة العام ٢٠١٨ العادية الخميس ٧ حزيران ٢٠١٨ للمكفوفين

مسابقة في الثقافة العلمية- مادة الفيزياء الاسم: المدة ساعة واحدة الرقم:

<u>This exam is formed of three exercises in two pages.</u> The use of non-programmable calculator is recommended

Exercise 1: (7 ¹/₂ points)

Mechanical energy

A girl standing on a platform throws a stone, considered as a particle of mass m = 0.1 kg, vertically upwards from point A found at a height $h_A = 30$ m above sea level. The stone is launched from point A with a speed $V_A = 12$ m/s, reaches its maximum height at point B, and then it falls down to reach point C at sea level.

Take:

- the sea level as a gravitational potential energy reference for the system [stone, Earth];
- $g = 10 \text{ m/s}^2$.
- 1- Calculate, at point A, at the launching instant:
 - **1-1**) the kinetic energy of the stone;
 - 1-2) the gravitational potential energy of the system [stone, Earth];
 - 1-3) the mechanical energy of the system [stone, Earth].
- **2-** In this part, air resistance is neglected.
 - 2-1) Specify the value of the mechanical energy of the system [stone, Earth] at point B.
 - **2-2**) Determine the maximum height h_B reached by the stone above sea level.
 - **2-3**) Determine the speed V_C of the stone as it reaches point C.
- 3- In reality air resistance is not neglected. The stone reaches point C with a speed $V'_{\rm C} = 21$ m/s.
 - **3-1**) Calculate the new value of the mechanical energy of the system [stone, Earth] at point C.
 - **3-2**) Calculate the decrease in the mechanical energy of the system [stone, Earth] between points A and C.
 - 3-3) In what form of energy does this decrease in mechanical energy appear?

Exercise 2: (6 ¹/₂ points)

The americium-241 nucleus

The americium nucleus $^{241}_{95}$ Am is a radioactive nucleus which is usually used in archeology.

- 1- Indicate the number of protons and that of nucleons in the nucleus of americium $^{241}_{95}$ Am.
- **2-** The reaction of disintegration of americium $^{241}_{95}$ Am is given by :

$$^{241}_{95}\text{Am} \rightarrow ~^{237}_{93}\text{Np} + ~^{\text{A}}_{Z}X + \gamma$$

- **2-1**) Define radioactivity.
- 2-2) Calculate A and Z indicating the used laws.
- **2-3)** Indicate the name and the symbol of the emitted particle ${}^{A}_{Z}X$.
- **2-4**) This disintegration is accompanied with the emission of γ radiation. Indicate:
 - **2-4-1**) the cause of the emission of the γ radiation;
 - **2-4-2**) the nature of the γ radiation.
- **3-** The energy liberated due to this disintegration of the americium-241 nucleus is E = 5.63 MeV. Calculate, in kg, the mass defect Δm due to this disintegration.

Given:

1 MeV = 1.6×10^{-13} J; speed of light in vacuum c = 3×10^8 m/s.

Exercise 3: (6 points)

Mars

Mars, the red planet, is the fourth planet according to its average distance from the Sun. It is a terrestrial planet which can be observed by the naked eye. The period of revolution of Mars is $T_M = 1.881$ years, whereas that of Earth is $T_E = 1$ year = 365.25 days.

- Doc. 1
- 1- Name the terrestrial planets of our solar system.
- 2- Pick out from document 1 an indicator which shows that Mars:
 - **2-1**) is a rocky planet;
 - 2-2) contains large quantities of iron oxide in the rocks and stones scattered on its surface.
- **3-** Document 1 indicates the periods of revolution of Mars and Earth.
 - 3-1) What does the « period of revolution » of a planet represent?
 - 3-2) Calculate, in days, the period of revolution of Mars.
 - **3-3**) Using the periods of revolution of Mars and Earth, specify which of the two planets is closer to the Sun.
 - **3-4**) State Kepler's law which confirms the answer of question (3-3).