

This exam is formed of three exercises in two pages. The use of non-programmable calculator is recommended

Exercise 1: (7 ½ points)

Mechanical energy

A girl standing on a platform throws a stone, considered as a particle of mass $m=0.1 \mathrm{~kg}$, vertically upwards from point A found at a height $h_{A}=30 \mathrm{~m}$ above sea level. The stone is launched from point A with a speed $V_{A}=12 \mathrm{~m} / \mathrm{s}$, reaches its maximum height at point B , and then it falls down to reach point C at sea level.

Take:

- the sea level as a gravitational potential energy reference for the system [stone, Earth];
- $\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}$.

1- Calculate, at point A , at the launching instant:
$\mathbf{1 - 1)}$ the kinetic energy of the stone;
1-2) the gravitational potential energy of the system [stone, Earth];
1-3) the mechanical energy of the system [stone, Earth].
2- In this part, air resistance is neglected.
2-1) Specify the value of the mechanical energy of the system [stone, Earth] at point B.
2-2) Determine the maximum height h_{B} reached by the stone above sea level.
2-3) Determine the speed V_{C} of the stone as it reaches point C.
3- In reality air resistance is not neglected. The stone reaches point C with a speed $V_{C}^{\prime}=21 \mathrm{~m} / \mathrm{s}$.
3-1) Calculate the new value of the mechanical energy of the system [stone, Earth] at point C.
3-2) Calculate the decrease in the mechanical energy of the system [stone, Earth] between points A and C.
3-3) In what form of energy does this decrease in mechanical energy appear?

Exercise 2: ($6^{1 ⁄ 2}$ points)

The americium-241 nucleus

The americium nucleus ${ }_{95}^{241} \mathrm{Am}$ is a radioactive nucleus which is usually used in archeology.

1- Indicate the number of protons and that of nucleons in the nucleus of americium ${ }_{95}^{241} \mathrm{Am}$.
2- The reaction of disintegration of americium ${ }_{95}^{241} \mathrm{Am}$ is given by :

$$
{ }_{95}^{241} \mathrm{Am} \rightarrow{ }_{93}^{237} \mathrm{~Np}+{ }_{\mathrm{Z}}^{\mathrm{A}} \mathrm{X}+\gamma
$$

2-1) Define radioactivity.
2-2) Calculate A and Z indicating the used laws.
2-3) Indicate the name and the symbol of the emitted particle ${ }_{Z}^{A} X$.
2-4) This disintegration is accompanied with the emission of γ radiation. Indicate:
2-4-1) the cause of the emission of the γ radiation;
2-4-2) the nature of the γ radiation.
3- The energy liberated due to this disintegration of the americium- 241 nucleus is $\mathrm{E}=5.63 \mathrm{MeV}$.
Calculate, in kg , the mass defect $\Delta \mathrm{m}$ due to this disintegration.
Given:
$1 \mathrm{MeV}=1.6 \times 10^{-13} \mathrm{~J} ;$ speed of light in vacuum $\mathrm{c}=3 \times 10^{8} \mathrm{~m} / \mathrm{s}$.

Exercise 3: (6 points)

Mars

Mars, the red planet, is the fourth planet according to its average distance from the Sun.
It is a terrestrial planet which can be observed by the naked eye.
The period of revolution of Mars is $\mathrm{T}_{\mathrm{M}}=1.881$ years, whereas that of Earth is $\mathrm{T}_{\mathrm{E}}=1$ year $=365.25$ days.

Doc. 1

1- Name the terrestrial planets of our solar system.
2- Pick out from document 1 an indicator which shows that Mars:
2-1) is a rocky planet;
2-2) contains large quantities of iron oxide in the rocks and stones scattered on its surface.
3- Document 1 indicates the periods of revolution of Mars and Earth.
3-1) What does the «period of revolution » of a planet represent?
3-2) Calculate, in days, the period of revolution of Mars.
3-3) Using the periods of revolution of Mars and Earth, specify which of the two planets is closer to the Sun.
3-4) State Kepler's law which confirms the answer of question (3-3).

