وزارة التربية والتعليم العالي المديرية العامة للتربية دائرة الامتحانات الرسمية

عدد المسائل: ست مسابقة في مادة الرياضيات الاسم: المدة: أربع ساعات الرقم:

I- (2 points)

In the space referred to a direct orthonormal system $(O; \vec{i}, \vec{j}, \vec{k})$, consider the point E(-2; 0; 1) and the line (d) defined as x = m - 1, y = 2m, z = m + 2 where $m \in \mathbb{R}$.

- 1) a- Verify that E is not on (d).
 - b- Show that x z + 3 = 0 is an equation of plane (P) determined by E and (d).
- 2) Consider in the plane (P) the circle (C) with center I(-3; -1; 0) and radius $\sqrt{3}$.
 - a- Show that line (d) is tangent to circle (C) at point F(-2; -2; 1).
 - b- Verify that E is on (C) and determine the coordinates of point A on (d) so that (AE) is tangent to (C).
- 3) Denote by (Δ) the line perpendicular to (P) at I.
 - a- Write a system of parametric equations of (Δ) .
 - b- Calculate the coordinates of point M on (Δ) so that the volume of tetrahedron MIEF is equal to 2 cubic units. ($x_M \neq 0$)

II- (3 points)

Consider a fair cubic die numbered from 1 to 6 and two urns U₁ and U₂.

U₁ contains 4 blue balls, 3 red balls and 1 green ball.

U₂ contains 4 blue balls, 2 red balls and 2 green balls.

A game consists of rolling the die once.

- If the die shows the face numbered 1 or 2, then three balls are randomly and simultaneously selected from U₁,
- Otherwise, three balls are randomly and simultaneously selected from U₂.

Consider the follwing events:

A: « the die shows the face numbered 1 or 2»

B: « the three selected balls have the same color »

C: « no red ball is obtained among the three selected balls »

- 1) a- Calculate the probability P(B/A) and show that $P(A \cap B) = \frac{5}{168}$.
 - b- Calculate P(B).
- 2) a- Verify that $P(C) = \frac{25}{84}$.
 - b- Knowing that no red ball is obtained among the three selected balls, calculate the probability that the die shows a face with number greater than or equal to 3.
- 3) Let X be the random variable equal to the number of green balls obtained among the three selected balls.
 - a- Determine the probability distribution of X.
 - b- If this game is repeated 160 times, estimate then the number of green balls obtained.

III- (2 points)

Consider the sequence (U_n) defined as : $U_n = \int_0^1 \frac{x^{2n}}{1+x^2} dx$ where $n \in \mathbb{N}$.

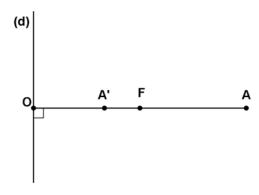
- 1) a- Calculate U₀.
 - b- Calculate $U_0 + U_1$ and deduce U_1 .
- 2) a- For all $n \in \mathbb{N}$, show that $U_n \ge 0$.
 - b- For all $0 \le x \le 1$, prove that (U_n) is decreasing.
 - c- Deduce that (U_n) is convergent.
- 3) a- For all $n \in \mathbb{N}$, show that $U_{n+1} + U_n = \frac{1}{1+2n}$.
 - b- Deduce the limit of U_n as n tends to $+\infty$.

IV- (3 points)

Consider in a plane (P) a line (d) and a point F. Let O be the orthogonal projection of F on (d) with OF = 3.

Let A be the symmetric of O with respect to F and A' the point on segment [OF] such that OA' = 2. In the plane (P), consider the ellipse (E) with

focus F, associated directrix (d) and eccentricity $\frac{1}{2}$.



Part A

- 1) a- Verify that A and A' are two vertices of (E).
 - b- Determine the center I of (E) and its second focus G.
- 2) Denote by B and B' the vertices of (E) on the non-focal axis.
 - a- Calculate AA' and verify that BB' = $2\sqrt{3}$.
 - b- Draw (E).

Part B

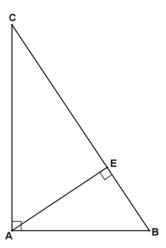
The plane (P) is referred to an orthonormal system $(O; \vec{i}, \vec{j})$ such that $\vec{i} = \frac{1}{3} \overrightarrow{OF}$.

- 1) Verify that an equation of (E) is: $3x^2 + 4y^2 24x + 36 = 0$.
- 2) Let L be the point of (E) with abscissa 3 $(y_L > 0)$.
 - a- Write an equation of (T), the tangent at L to (E).
 - b- Denote by K the point of intersection of (T) with the non-focal axis of (E). Calculate the area of the region inside triangle OIK and outside ellipse (E).

2

V- (4 points)

In an oriented plane, consider a triangle ABC right angled at A such that AB = 4 , AC = 6 and $(\overrightarrow{AB}, \overrightarrow{AC}) = \frac{\pi}{2} \left[2\pi \right]$.



Denote by E the orthogonal projection of point A on line (BC).

Let S be the direct plane similitude that maps B onto A and A onto C.

- 1) Calculate the ratio (scale factor) k of S and find a measure of angle α of S.
- 2) a- Determine the image of line (AE) under S and the image of line (BC) under S. b- Deduce that E is the center of S.
- 3) Let F = S(C).
 - a- Prove that A, E and F are collinear.
 - b- Show that (CF) is parallel to (AB).
 - c- Construct F and calculate CF.
- 4) Denote by h the dilation that maps A onto B and with ratio $\frac{-1}{3}$.
 - a- Determine $S \circ h(A)$.
 - b- $S \circ h$ is a direct plane similitude. Determine its center, its ratio and a measure of its angle.
- 5) The complex plane is referred to a direct orthonormal system $(A; \overrightarrow{u}, \overrightarrow{v})$ with $\overrightarrow{u} = \frac{1}{4} \overrightarrow{AB}$ and $\overrightarrow{v} = \frac{1}{6} \overrightarrow{AC}$.
 - a- Write the complex form of $S \circ h$.
 - b- Calculate the affix of point $B' = S \circ h(B)$.
 - c- Let (P) be the parabola with vertex A and focus B and (P') be the image of (P) under $S \circ h$.

Write an equation of (P').

VI- (6 points)

Part A

- 1) Verify that $\int \ln x dx = x \ln x x + k$ where k is a real constant and x > 0.
- 2) Consider the differential equation (E) satisfied by $y : xy' + y = -1 2x 2 \ln x$ where y is a function of x (x > 0).

Let
$$z = x y$$
.

- a- Form a differential equation (E') satisfied by z and solve (E').
- b- Deduce the particular solution of (E) such that y(1) = 0.

Part B

Consider the two functions g and f defined over 0; $+\infty$ as $g(x) = 1 - x - 2 \ln x$

and $f(x) = \frac{x + \ln x}{x^2}$ and denote by (C) the representative curve of f in an orthonormal

system $(0; \vec{i}, \vec{j})$.

- 1) a- Determine $\lim_{\substack{x\to 0\\x>0}} g(x)$ and $\lim_{x\to +\infty} g(x)$.
 - b- Calculate g'(x) and set the table of variations of g.
 - c- Calculate g(1), then discuss according to the values of x the sign of g(x).
- 2) Determine $\lim_{\substack{x\to 0\\x>0}} f(x)$ and $\lim_{x\to +\infty} f(x)$. Deduce the asymptotes to (C).
- 3) Show that $f'(x) = \frac{g(x)}{x^3}$ and set up the table of variations of f.
- 4) Calculate the exact value of f(e) and draw the curve (C).
- 5) Use integration by parts to calculate $\int \frac{\ln x}{x^2} dx$.
- 6) a- For $x \in [1; +\infty[$, prove that the function f has an inverse function f^{-1} whose domain of definition is to be determined.
 - b- Draw (Γ), the representative curve of f^{-1} in the same system as that of (C).

4

c- Calculate the area of the region bounded by (Γ) and the three lines with equations

$$y = 1$$
, $x = \frac{e+1}{e^2}$ and $x = 1$.

أسس تصحيح مادة الرياضيات

عدد المسائل: ست

QI	Answers				
1a	$m-1=-2 \; ; \; m=-1$ $y=2(m)=2(-1)=-2 \neq y_E=0 \; then \; E \not\in (d)$				
1b	$E \in (P)$ and $(d) \subset (P)$.	0.5			
2a	 F ∈ (d) ⊂ (P) for m = -1 IF = √3 = Radius IF · V_d = 0 	1			
2b	• IE = $\sqrt{3}$ = Radius and E \in (P) then E \in (C) • A(m-1; 2m; m+2) and $\overrightarrow{AE} \cdot \overrightarrow{IE} = 0$ then m = $-\frac{1}{2}$ thus A $\left(-\frac{3}{2}; -1; \frac{3}{2}\right)$	1			
3a	$(\Delta) \perp (P) \text{ then } \overrightarrow{V}_{(\Lambda)} = \overrightarrow{n}_{(P)} \text{ and } I \in (\Delta) \text{ thus } (\Delta) : \begin{cases} x = t - 3 \\ y = -1 \\ z = -t \end{cases}; t \in \mathbb{R}$	0.5			
3b	$M(t-3;-1;-t)$ $det(\overrightarrow{IM},\overrightarrow{IE},\overrightarrow{IF}) = 4t $ $V = \frac{1}{6} \left det(\overrightarrow{IM},\overrightarrow{IE},\overrightarrow{IF}) \right = \frac{1}{6} 4t = 2 \text{ then } t = -3 \text{ ou } t = 3$ For $t = -3$, $M(-6;-1,3)$	0.75			

QII	Answers	Mark
1a	$P(B/A) = \frac{C_3^3 + C_4^3}{C_8^3} = \frac{5}{56} ; P(A \cap B) = P(A) \times P(B/A) = \frac{1}{3} \times \frac{5}{56} = \frac{5}{168}$	
1b	$P(B) = P(A \cap B) + P(\overline{A} \cap B) = \frac{5}{168} + P(\overline{A}) \times P(\overline{A}) = \frac{5}{168} + \frac{2}{3} \times \frac{C_4^3}{C_8^3} = \frac{13}{168}$	1
2a	$P(C) = P(A \cap C) + P(\overline{A} \cap C) = \frac{1}{3} \times \frac{C_5^3}{C_8^3} + \frac{2}{3} \times \frac{C_6^3}{C_8^3} = \frac{25}{84}$	1
2b	$P(\overline{A}_C) = \frac{P(\overline{A} \cap C)}{P(C)} = \frac{\frac{40}{168}}{\frac{25}{84}} = \frac{4}{5}$	1
3a	The values of X are 0, 1 and 2. $P(X = 0) = \frac{1}{3} \times \frac{C_7^3}{C_8^3} + \frac{2}{3} \times \frac{C_6^3}{C_8^3} = \frac{75}{168} \; ; \; P(X = 1) = \frac{1}{3} \times \frac{C_7^2 \times C_1^1}{C_8^3} + \frac{2}{3} \times \frac{C_6^2 \times C_2^1}{C_8^3} = \frac{81}{168}$ $P(X = 2) = \frac{2}{3} \times \frac{C_6^1 \times C_2^2}{C_8^3} = \frac{12}{168}$	1
1a	$E(X) = \frac{5}{8}$ then the estimated number of green balls is $\frac{5}{8} \times 160 = 100$.	1

QIII	Answers	Mark			
1a	$U_0 = \int_0^1 \frac{1}{1+x^2} dx = \arctan x \Big]_0^1 = \frac{\pi}{4}$	0.5			
1b	$U_0 + U_1 = \int_0^1 \frac{1}{1+x^2} dx + \int_0^1 \frac{x^2}{1+x^2} dx = \int_0^1 \frac{1+x^2}{1+x^2} dx = x \Big]_0^1 = 1 \ ; \ U_1 = 1 - U_0 = 1 - \frac{\pi}{4}$				
2a	$\frac{x^{2n}}{1+x^2} \ge 0 \text{ for } 0 \le x \le 1 \text{ ; then } U_n \ge 0$				
2b	$ \begin{array}{l} \textbf{2b} & U_{n+1} - U_n = \int\limits_0^1 \frac{x^{2n+2} - x^{2n}}{1+x^2} dx = \int\limits_0^1 \frac{x^{2n} \left(x^2 - 1\right)}{1+x^2} dx \\ & \text{If } 0 \leq x \leq 1 \text{, then } 0 \leq x^2 \leq 1 \text{ , thus } x^2 - 1 \leq 0 \\ & \text{Therefore } U_{n+1} - U_n \leq 0 \text{ then } (U_n) \text{ is decreasing} \end{array} $				
2c	(U _n) is decreasing and bounded below by 0, then (U _n) is convergent.	0.5			
3a	$U_{n+1} + U_n = \int\limits_0^1 \frac{x^{2n+2} + x^{2n}}{1 + x^2} dx = \int\limits_0^1 \frac{x^{2n} \left(x^2 + 1\right)}{1 + x^2} dx = \int\limits_0^1 x^{2n} dx = \frac{x^{2n+1}}{2n+1} \bigg]_0^1 = \frac{1}{2n+1}$	0.5			
3 b	Let $L = \lim_{n \to +\infty} U_n = \lim_{n \to +\infty} U_{n+1}$, then $L + L = \lim_{n \to +\infty} \frac{1}{2n+1} = 0$. Thus $L = 0$	0.5			

QIV		Ans	swers		Mark
Ala	$\frac{AF}{AO} = \frac{1}{2} = e \text{ and } A \in (OF) = \text{focal axis, then A is a vertex of (E).}$ $\frac{A'F}{A'O} = \frac{OF - OA'}{OA'} = \frac{1}{2} = e \text{ and } A' \in (OF) = \text{focal axis, then A' is a vertex of (E).}$			0.5	
A1b	I is the midpoint of [AA'];	.5		3 2	
A2a	AA' = A'F + FA = 1 + OF = 4 = 2a, then a = 2 FG = 2FI = 2(A'I - A'F) = 2 = 2c, then c = 1 $BB' = 2b = 2 \sqrt{a^2 - c^2} = 2\sqrt{3}$		A2b	A A A A A A A A A A A A A A A A A A A	1
B1	a = 2; b = $\sqrt{3}$; focal axis is the absorbed (E): $\frac{(x-4)^2}{4} + \frac{y^2}{3} = 1$, thus $3x^2 + 4$	scissa 4y²	a axis – 24x	center $I(4; 0)$ 1 + 36 = 0	1
B2a	$L\left(3; \frac{3}{2}\right)$; $y'_{L} = \frac{1}{2}$; $(T): y = \frac{1}{2}$	$\frac{x}{2}$			1
B2b	K(4; 2); Area = Area(Triangle Constraints) $4 - \frac{\pi\sqrt{3}}{2}$ units of area.	OIK)	$1 - \frac{1}{4}$	Area(E) = $\frac{1}{2} \times OI \times IK - \frac{1}{4} \times \pi ab =$	1

QV	Answers	Mark		
1	$k = \frac{AC}{BA} = \frac{3}{2}$ and $\alpha = (\overrightarrow{BA}; \overrightarrow{AC}) = -\frac{\pi}{2} (2\pi)$	0.5		
2a	S(A) = C, then the image of (AE) is a line passing through C and perpendicular to (AE), which is (BC). S(B) = A, then the image of (BC) is a line passing through A and perpendicular to (BC), which is (AE).			
2b	$\{E\} = (AE) \cap (BC), \text{ then } \{S(E)\} = S((AE)) \cap S((BC)) = (BC) \cap (AE) = \{E\}$	0.5		
3a	S(B) = A; S(C) = F; S(E) = E B, C and E are collinear, then A, F and E are collinear	0.5		
3b	$S(A) = C$ and $S(C) = F$, then $(CF) \perp (AC)$ and since $(AB) \perp (AC)$, Thus $(CF) / / (AB)$			
3c	F is the common point between the parallel drawn from C to (AB) and (AE). $S(A) = C$ and $S(C) = F$, then $CF = k$ $AC = 9$			
4a	$S \circ h(A) = S(h(A)) = S(B) = A$	0.5		
4b	$S \circ h\left(A; \frac{1}{2}; \frac{\pi}{2}\right)$			
5a	$z' = \frac{1}{2}iz$	0.75		
5b	$z_B = 4$, then $z_{B'} = 2i$	0.75		
5c	(P') is a parabola with vertex A(0; 0) and focus B'(0; 2) (P'): $x^2 = 8y$	1		

QVI	Answers	
A1	$(x\ln x - x + k)' = \ln x$	0.5
A2a	z = xy, z' = y + xy' (E'): $z' = -1 - 2x - 2\ln x$; $z = -x^2 + x - 2x\ln x + C$	1
A2b	$y = \frac{z}{x} = -x + 1 - 2\ln x + \frac{C}{x}$ y(1) = 0, then C = 0; thus y = 1 - x - 2\ln x	0.75
B1a	$\lim_{\substack{x \to 0 \\ x > 0}} g(x) = +\infty \text{ and } \lim_{x \to +\infty} g(x) = -\infty$	0.5
B1b	$g'(x) = -1 - \frac{2}{x} < 0$ $g'(x)$ $g(x)$ $g(x)$ $+\infty$ $-$ $+\infty$	0.75
B1c	g(1) = 0 g(x) > 0 for $0 < x < 1g(x) = 0$ for $x = 1g(x) < 0$ for $x > 1$	1
B2	$\lim_{\substack{x \to 0 \\ x > 0}} f(x) = -\infty, \text{ then } x = 0 \text{ is an asymptote.}$	1

	$\lim_{x\to +\infty} f(x) = \lim_{x\to +\infty} \left(\frac{1}{x} + \frac{1}{x} \times \frac{\ln x}{x} \right) = 0 \text{ (or using H.R.), then } y = 0 \text{ is an asymptote.}$	
В3	$f'(x) = \frac{g(x)}{x^3}$ $\frac{x}{f'(x)} = \frac{0}{f'(x)} + \frac{1}{f'(x)} - \frac{1}{f'(x)} = \frac{1}{$	1.25
B4	$f(e) = \frac{e+1}{e^2}$	1.25
B5	$\int \frac{\ln x}{x^2} dx = -\frac{1}{x} \ln x - \int -\frac{1}{x^2} dx = -\frac{1}{x} \ln x - \frac{1}{x} + C$	
B6a	f is continuous and strictly decreasing over $[1;+\infty[$, then f has an inverse function f ⁻¹ whose domain of definition is $]0;1]$	
B6b	(Γ) is the symmetric of (C) with respect to line $y = x$.	
B6c	A = $\int_{\frac{e+1}{e^2}}^{1} (f^{-1}(x) - 1) dx = \int_{1}^{e} (\frac{1}{x} + \frac{\ln x}{x^2} - \frac{e+1}{e^2}) dx = \ln x + \frac{-1 - \ln x}{x} \Big]_{1}^{e} - \frac{e+1}{e^2} \times (e-1) = 1 - \frac{2}{e} + \frac{1}{e^2} = (\frac{e-1}{e})^2 \approx 0.4 \text{ units of area.}$	1.5