الاستثنائية	۲.	17	الىعام	دورة
آب ۲۰۱۷				

امتحانات الشهادة الثانوية العامة فرع: الآداب والإنسانيات وزارة التربية والتعليم العالي المديرية العامة للتربية دائرة الامتحانات الرسميّة

	و المقدّ في المقال المناب	ANT - 11 - 11 - 11
الاسم:	مسابقة في مادة الرياضيات	عدد المسائل: ثلاث
, , , , , , , , , , , , , , , , , , ,		
ال قد٠	المدة: ساعة واحدة	
•———	· · · · · · · · · · · · · · · · · · ·	

ملاحظة: - يسمح باستعمال آلة حاسبة غير قابلة للبرمجة او اختزان المعلومات او رسم البيانات. - يستطيع المرشّح الإجابة بالترتيب الذي يناسبه (دون الالتزام بترتيب المسائل الواردة في المسابقة)

I- (5 points)

Two shirts and three hats cost 105 000 LL.

The price of a shirt is decreased by 10 % while the price of a hat remains the same. After this reduction, the price of three shirts and one hat becomes 96 000 LL.

- 1) a- Write a system of two equations with two unknowns to model the previous text.
 - b- Calculate the original price of one shirt and that of one hat.
- 2) After reduction, Nadia paid 87 000LL to buy one shirt and some hats. How many hats did she buy?

II- (5 points)

In a factory, 25 employees are distributed according to the following table:

Age	[20-30[[30-40[[40-50[[50-60]	Total
Engineer	1	4		3	10
Workers		4	4	2	
Total	6		6		25

- 1) Copy and complete the table above.
- 2) An employee is randomly selected.

Consider the following events:

E: « the selected employee is an engineer »

F: « the selected employee is strictly less than 40 years old »

Calculate the following probabilities: P(E), P(F), P(E/F) and $P(E \cap F)$.

- 3) Knowing that the selected employee is an engineer, calculate the probability that this employee is strictly less than 50 years old.
- 4) Calculate the average age of the engineers and the average age of the workers, then deduce the average age of the 25 employees.

III- (10 points)

In the figure below, (C) is the representative curve of a function f, in an orthonormal system of axes (O; \vec{i} , \vec{j}).

- 1) Determine the domain of definition of the function f.
- 2) a- Determine $\lim_{\substack{x \to 1 \\ x < l}} f(x)$ and $\lim_{\substack{x \to 1 \\ x > l}} f(x)$.
 - b- Deduce the equation of an asymptote (d) to (C).
- 3) a- Find f(2) and f(0).
 - b- Compare f(3) and f(4).
- 4) a- Set up the table of variations of the function f.
 - b- Compare $f'(\frac{1}{2})$ and f'(-3).
- 5) Solve graphically the inequality f(x) < -2.
- 6) Could we find x so that f(x) = 0? Justify.
- 7) Assume that $f(x) = ax + b + \frac{1}{x-1}$, show that a = 1 and b = -1.

أسس تصحيح مادة الرياضيات

عدد المسائل: ثلاث

I	Short answers	notes
1a	(2x + 3y = 105000	1,0
	(27x + 10y = 96000	1,0
1b	$x = 30\ 000$ and $y = 15\ 000$. The price of one shirt is 30 000LL and the price of one hat is	1.0
	15 000LL	1,0
2	The price one shirt after the discount is 27 000LL	
	$27\ 000 + 15\ 000\ a = 87\ 000\ so\ a = 4.$	۲
	Nadia bought 4 hats.	

II		Short ansv	wers				notes
1							
	Age	[20-30[[30-40[[40-50[[50-60[Total	,
	Engineer	1	4	2	3	10	
	worker	5	4	4	2	15	
	Total	6	8	6	5	25	
2	$P(E) = \frac{10}{25} = \frac{2}{5}$; $P(F) = \frac{14}{25}$; $P(E/F) = \frac{5}{14}$; $P(E \cap F) = \frac{5}{25} = \frac{1}{5}$.					۲	
3	$P(< 50 \text{ years } / E) = \frac{7}{10}$.						,
4	The average age of one engineer is $=$ $\frac{25 + 35 \times 4 + 45 \times 2 + 55 \times 3}{10} = 42$. The average age of one worker is $=$ $\frac{5 \times 25 + 4 \times 35 + 4 \times 45 + 2 \times 55}{15} = 37$. The average age of each of the 25 employees $=$ $\frac{10 \times 42 + 15 \times 37}{25} = 39$,	

III	Short answers	notes
1	$D_{f} =]-\infty,1[\cup]1,+\infty[.$	٠,٥
2a	$\lim_{\substack{x \to 1 \\ x < 1}} f(x) = -\infty . \qquad \lim_{\substack{x \to 1 \\ x > 1}} f(x) = +\infty .$,
2b	(d): $x = 1$ asymptote of (C).	٠,٥
3a	f(2) = 2 et $f(0) = -2$.	,
3b	f(3) < f(4).	,
4a		
	$x -\infty$ 0 1 2 $+\infty$	
	f'(x) + 0 - 0 +	,
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
4b	$f'(\frac{1}{2}) < f'(-3) \text{ car } f'(\frac{1}{2}) < 0 \text{ et } f'(-3) > 0.$,
5	$S =] - \infty ; 0 [\cup] 0 ; 1 [.$,
٦	f(x) = 0 doesn't have a solution because (C) doesn't cut (x'x).	`
٧	$f(0) = -2$; $b - 1 = -2$ so $b = -1$, $f(x) = ax - 1 + \frac{1}{x - 1}$,	۲
	f(2) = 2 so $2a - 1 + 1 = 2$; $a = 1$	