الاسم:	مسابقة في مادة الرياضيات
الرقم:	المدّة: ساعتان

I - (2 points)

In the following table, only one of the proposed answers to each question is correct. Write the number of the question and its corresponding answer. Justify your choice.

	Quartiens	Answers		
	Questions	a	ь	c
1	$3\sqrt{2} - \sqrt{50} + \sqrt{8} =$	$10\sqrt{2}$	0	$-30\sqrt{2}$
2	$\frac{1}{\sqrt{5}-2} =$	$\sqrt{5}+2$	$\frac{\sqrt{5}+2}{3}$	-1
3	ABCD is a parallelogram, then $\overrightarrow{AB} + \overrightarrow{DA} =$	$\overrightarrow{\mathrm{BC}}$	$\overrightarrow{\mathrm{CA}}$	DB
4	After an increase of 15%, the price of an article becomes 23 000 L.L. The original price of this article is:	17 000 L.L.	20 000 L.L.	19 550 L.L.

II - (3.5 points)

Given
$$A(x) = (x-3)^2 - (x-3)(2x-7)$$
.

1) Prove that
$$A(x) = (x-3)(4-x)$$
.

2) Let
$$B(x) = (16-x^2) + A(x)$$
.

Factorize B(x).

3) Let
$$F(x) = \frac{A(x)}{(4-x)(2x+1)}$$
.

- **a.** For what values of x, is F(x) defined?
- **b.** Simplify F(x), then solve the equation $F(x) = \frac{2}{3}$.
- **c.** Does the equation F(x) = x have a solution? Justify.

III – (3 points)

- 1) Solve the following system: $\begin{cases} 5x + 2y = 12000 \\ x + 2y = 8000. \end{cases}$
- 2) A restaurant sells 10 green salads and 4 vegetarian pizzas for 24 000 L.L. The same restaurant sells 6 green salads and 12 vegetarian pizzas for 48 000 L.L. Show that this text is modeled by the system given in question 1).
- 3) Nadine orders 8 green salads and 6 vegetarian pizzas, how much will she pay?

IV - (5.5 points)

In an orthonormal system of axes (x'ox, y'oy), consider the points A(4;2), B(-1;2) and E(1;3).

Let (d) be the line with equation y = 3x.

- **1) a.** Plot A, B and E.
 - **b.** Verify that E is a point on the line (d). Draw (d).
- 2) a. Calculate OB and show that OA = 2OB.
 - **b.** Show that OAB is a right angled triangle.
- 3) a. Determine the coordinates of the point L, the symmetric of O with respect to B.
 - **b.** Verify that E is the midpoint of [AL].
- 4) Let (d') be the line passing through A and perpendicular to (OA).

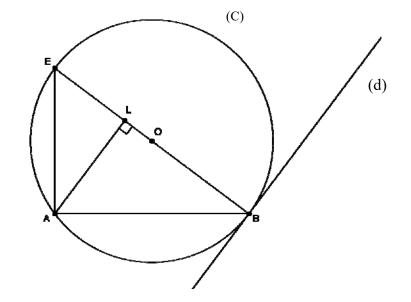
Show that the equation of (d') is y = -2x + 10.

- 5) Let F be the point with coordinates (2;6).
 - **a.** Verify that F is the intersection point of (d) and (d').
 - **b.** Prove that the quadrilateral OAFL is a square.

V – (6 points)

In the adjacent figure:

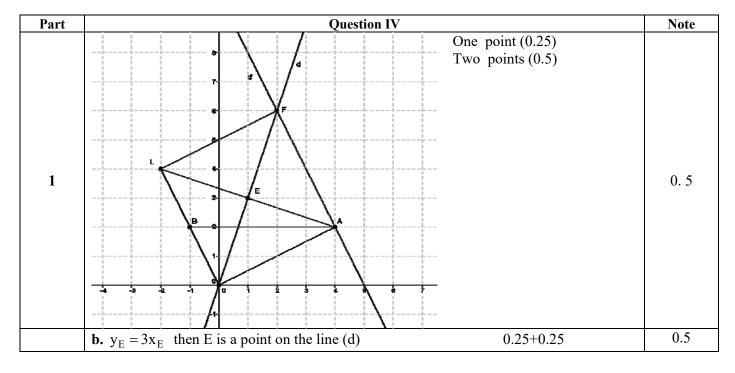
- (C) is a circle with center O, radius 5 and diameter [EB]
- A is a point on (C) so that AE = 6
- (d) is the tangent at B to (C)
- [AL] is an altitude in the triangle ABE.
- 1) Copy the figure that will be completed in the remaining parts of the problem.
- 2) a. Calculate AB.
 - **b.** Verify that $\sin AEB = \frac{4}{5}$.



- 3) The parallel through L to (AB) intersects [EA] at M and the line (d) at F.
 - a. Prove that the two triangles EML and FBL are similar.
 - **b.** Calculate, rounded to the nearest degree, the measure of angle BFL .
- 4) Prove that the points E, M, B and F are on the same circle whose center I should be determined.
- 5) Prove that the quadrilateral ALFB is a parallelogram.
- 6) The diagonals [AF] and [BL] of the parallelogram ALFB intersect at J. Prove that (IJ) is perpendicular to (AB).

	Correction	
Part	Question I	Note
1	$3\sqrt{2} - \sqrt{50} + \sqrt{8} = 0$ b)	0.5
2	$\frac{1}{\sqrt{5}-2} = \frac{1}{\sqrt{5}-2} \times \frac{\left(\sqrt{5}+2\right)}{\left(\sqrt{5}+2\right)} = \sqrt{5}+2$ a)	0.5
3	$\overrightarrow{DA} + \overrightarrow{AB} = \overrightarrow{DB}$ c)	0.5
4	$23000 \div 1.15 = 20000$ b)	0.5
Part	Question II	
1	$A(x) = (x-3)^2 - (x-3)(2x-7) = (x-3)(x-3-2x+7) = (x-3)(4-x) 0.25+0.25$	0.5
2	$B(x) = (16 - x^{2}) + A(x) = (16 - x^{2}) + (x - 3)(4 - x)$ $0.25 + 0.25$	1
	B(x) = (4-x)(4+x) + (x-3)(4-x) = (4-x)(2x+1) 0.25 + 0.25	1
3	a. F(x) is defined for $x \ne 4$ et $x \ne -\frac{1}{2}$ 0.25 + 0.25	0.5
	b. $\frac{(x-3)(4-x)}{(4-x)(2x+1)} = \frac{(x-3)}{(2x+1)}$; $3x-9=4x+2$ alors $x=-11$ 0.25+0.5	0.75
	c. $\frac{x-3}{2x+1} = x$ then $(2x+1)x = (x-3)$	0.75
	and $x^2 = -\frac{3}{2}$ No solution 0.25+0.25+0.25	0.75

Part	Question III		Note
1	x = 1 000 and y = 3 500	0.5 + 0.5	1
2	$\begin{cases} 10x + 4y = 24000(\div 2) \\ 6x + 12y = 48000(\div 6) \end{cases}$	(0.5+0.25) (0.25+0.25)	1.25
3	The price of a green salad is 1 000 L.L. and the price of a v so Nadine will pay $8(1000) + 6(3500) = 29000$ L.L	vegetarian pizza is 3 500L.L. 0.25 0.5	0.75



	a. OB = $\sqrt{5}$ and OA = $2\sqrt{5}$ then OA=2OB 0.25+0.25+0.25	0.75
2		
	b. AB=5 and by Pythagorean theorem $AB^2 = OA^2 + OB^2$ 0.25+0.25	0.5
	v tv v tv	
	a. $x_B = \frac{x_L + x_O}{2} = -1$ and $y_B = \frac{y_L + y_O}{2} = 2$ then L(-2;4)	0.5
3		0.5
	b. $x_E = \frac{x_A + x_L}{2} = 1$ and $y_E = \frac{y_A + y_L}{2} = 3$ verified	0.5
4	$a_{\text{(OA)}} = \frac{1}{2}$ and $a_{\text{(OA)}}.a_{\text{(d')}} = -1$ then $a_{\text{(d')}} = -2$; (d'): $y = -2 \times +10$ 0.25+0.5+0.25	1
	a. F belongs to (d) since $y_F = 3x_F$ and F belongs to (d') since $y_F = -2x_F + 10$	0.5
5	0.25+0.25	0.5
	b. E midpoint of [LA] and E miodpoint of [OF] then OAFL is a parallelogram.	0.75
	OL=2OB=OA and $\hat{O} = 90^{\circ}$ then OAFL is a square. 0.25+0.25+0.25	

Part	Question V	Note
1	E (d)	0.5
	a. Pythagorean Theorem : $AB^2 = EB^2 - AE^2 = 100 - 36$ so $AB = 8$	0.5
2	b. $\sin AEB = \frac{AB}{EB} = \frac{8}{10} = \frac{4}{5}$	0.5
3	a. $ELM = BLF$ (vertically opposite angles) $EML = EBF = 90^{0}$ So the two triangles are similar 0.5	1
	b. $\sin BFL = \sin AEB = 0.8 \text{ so } BFL \square 53^{\circ}$ 0.5+0.5	1
4	The two triangles EMF and EBF are two right triangles facing the same hypotenuse [EF] so the four points E,M,B and F are on the same circle of center I the midpoint of [EF]. 0.25+0.25+0.25	0.75
5	(AL) \perp (EB) and (BF) \perp (EB) so (AL)//(BF) 0.5+0.25 And we have (LF)//(AB) then ALFB is a parallellogram.	0.75
6	I midpoint of [EF] and J midpoint of [AF] so (IJ)//(EA) and (EA) \(\perp \) (AB) so (IJ) \(\perp \) (AB) $0.5+0.5$	1