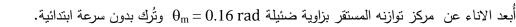
الاسم: الرقم: مسابقة في مادة الفيزياء المدة: ثلاث ساعات

#### تتالف هذه المسابقة من أربعة تمارين،موزعة على أربعة صفحات.

#### يسمح باستعمال الة حاسبة غير قابلة للبرمجة.

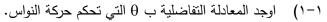

# التمرين الاول(٨علامات) ايجاد عزم القصور لإناء فخار

هدف هذا التمرين هو ايجاد عزم القصور لإناء فخار بالنسبة لمحورين دوران منفصلين. كتلة الاناء هي m=2kg ومركز ثقله هو (G).

#### ١ - عزم قصور الإناء بالنسبة لمحور افقى

علقنا الاناء بنقطة Ο . يشبّه الاناء بنوّاس ثاقل يستطيع ان يهتز بدون احتكاك حول محور افقى (Δ) . I مستند ۱). عزم قصور الاناء بالنسبة لـ ( $\Delta$ ) هو

> O عند التوازن يكون مركز ثقل الاناء في الموضع وO على الخط العمودي المار ب




 $\theta = (\overrightarrow{OG_0}\,,\,\overrightarrow{OG}\,)$  هو G الزاوي له G الإحداثي الزاوي له G النواس بلحظة G حيث ان الاحداثي الزاوي له G $heta'=rac{\mathrm{d} heta}{\mathrm{d}t}$  والقيمة الجبرية للسرعة الزاوية هي



 $\cos \theta = 1 - \frac{\theta^2}{2}$  and  $\sin \theta = \theta$  ( $\theta$  in radians).: معطیات:  $g = 10 \text{ m/s}^2$ 

.  $I, a, g, m, \theta \text{ and } \theta'$ . كدالة من t كدالة من الطاقة الميكانيكية لجهاز (نواس t كدالة من t



١-١) الحل لهذه المعادلة التفاضلية هو:

 $\theta = \theta_{\rm m} \sin (\omega_0 t + \phi)$ .  $\theta_{\rm m}$ ,  $\phi$  and  $\omega_0$  هم ثوابت

 $\omega_0$  اوجد صيغة النبض الخاص  $\omega_0$ .

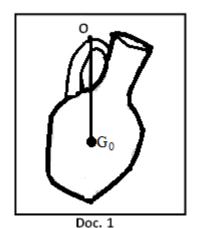
.I, m, g and a استنتج صيغة الزمن الدوري الخاص  $T_0$  للاهتزازات كدالة من  $T_0$  المتنتج صيغة الزمن الدوري الخاص

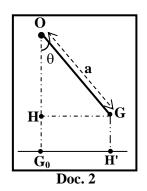
١-٣) يقوم النواس ب ٩ اهتزازات ب 25.2 ثانية.

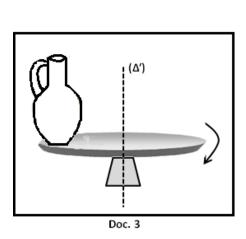
1-3-1) احسب الزمن الدوري الخاص  $T_0$  للاهتزازات.

۱-۶-۱) استتج قیمهٔ I .

ا -  $\xi$  يقيس جهاز خاص سرعة النواس الزاوية  $\theta$  عندما يمر بموضع توازنه. هذه السرعة الزاوية هي 0.36rd/s .اوجد مجددا قيمة I مطبقا مبدأ حفظ الطاقة


الميكانيكية لجهاز (نواس ، ارض).


#### عزم قصور 'I الاناء بالنسبة لمحور عمودى


تدور أسطوانة افقية مع اتجاه دوران عقارب الساعة بسرعة زاوية  $\theta'_t = 0.7 \; rad/s$  حول محور عمودي  $(\Delta')$  يمر بمركز ثقله. كتله الأسطوانة هي M=20kg وشعاعها هو . R=50cm

وضعنا بهدوء الاناء على طرف الأسطوانة الدوارة.

.  $\theta'_{\text{system}} = 0.45 \text{ rad/s}$  يدور الجهاز (أسطوانة-اناء) مع اتجاه دوران عقارب الساعة بسرعة زاوية







.  $I_t = \frac{1}{2}\,MR^2$ . : هو $(\Delta')$  عزم قصور الأسطوانة بالنسبة ل

. I' هو  $(\Delta')$  عزم قصور الاناء بالنسبة لـ

١-٢) سمّ القوى الخارجية المبذولة على الجهاز (أسطوانة-اناء).

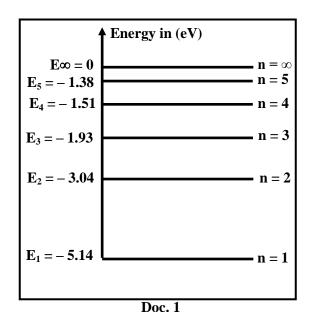
برهن ان العزم الحركي  $\sigma$  بالنسبة لـ  $(\Delta')$  لجهاز (أسطوانة –اناء) هو محفوظ.

۳−۲) استتج قیمهٔ 'I'.

### التمرين الثاني (٧،٥ علامات ) ذرة الصوديوم

يمثل المستند ١ بعض مستويات الطاقة لذرة الصوديوم.

 $h = 6.6 \times 10^{-34} \text{J.s}$ ;  $c = 3 \times 10^8 \text{ m/s}$ ; عطیات:


 $1eV = 1.6 \times 10^{-19} J$  and  $1u = 931.5 MeV/c^2$ .

الهدف من هذا التمرين هو دراسة استثارة واخماد ذرة الصوديوم.

#### ١ – استثارة ذرة الصوديوم

نعتمد عينة ذرات الصوديوم بحالة ابتدائية منخفضة (مستقرة) أضيئت هذه العينة بضوء أبيض يحتوي على كل الطيف المرئي :  $0.4~\mu m \leq \lambda_{visible} \leq 0.8~\mu m$ 

- ١-١) برهن أن طاقة ذرة الصوديوم هي طاقة كمومية مستخدماً
   مستند ١.
  - ۲-۱) أوجد بـ eV الطاقة العظمى والطاقة الدنيا لفوتونات الضوء الأبيض .
- ١-٣) مستخدماً المستند ١، برهن أن الضوء الأبيض غير قادر
   أن يسبب تأين ذرة الصوديوم.



۱-٤) أوجد بـ nm طول موجة الفوتون التي تستطيع أن تثير ذرة الصوديوم الى المستوى (الحالة )الأول المستثار.

#### ٢- اخماد ذرة الصوديوم

يحتوي الطيف المنبعث من مصباح بخار الصوديوم المنخفض الضغط على خطين ضوئيين اصفرين متقاربين، طولهما الموجي  $\lambda_1 = 589.0 \text{ nm}$  and  $\lambda_2 = 589.6 \text{ nm}$ 

- .  $\lambda_1 = 589.0 \text{ nm}$  تخمّد ذرة الصوديوم من مستوى الطاقة  $E_n$  الى الحالة المستقرة  $E_1$  بانبعاث فوتون طول موجته  $E_n$  قيمة eV. حدد مبرهناً بـ eV.
  - وكتلتها  $E_{3}$  فقدت بهذا الانتقال طاقة  $E_{3}$  وكتلتها  $E_{3}$  الى مستوى طاقة  $E_{1}$  فقدت بهذا الانتقال طاقة  $E_{3}$  وكتلتها فقصت  $\Delta m$ .
    - $.E_{3 
      ightarrow 1}$  قيمة MeV احسب ب
      - u, استتج ب (۲-۲-۲) استتج
- $P_1$  القدرة للإشعاعات ذات طول موجات  $\lambda_1$  and  $\lambda_2$  المنبعثة من مصباح بخار الصوديوم هي . P=6 W. القدرة للإشعاع بطول موجي  $\lambda_1$  هي اكبر بمرتين من القدرة  $P_2$  للإشعاع بطول موجي  $\lambda_1$  هي اكبر بمرتين من القدرة  $P_2$  المنبعثة من مصباح بخار الصوديوم هي الكبر بمرتين من القدرة  $P_2$  المنبعثة من مصباح بخار الصوديوم هي الكبر بمرتين من القدرة  $P_2$  المنبعثة من مصباح بخار الصوديوم هي الكبر بمرتين من القدرة  $P_2$  المنبعثة من مصباح بخار الصوديوم هي الكبر بمرتين من القدرة  $P_2$  المنبعثة من مصباح بخار الصوديوم هي الكبر بمرتين من القدرة  $P_2$  المنبعثة من مصباح بخار الصوديوم هي الكبر بمرتين من القدرة  $P_2$  المنبعثة من مصباح بخار الصوديوم هي الكبر بمرتين من القدرة  $P_2$  المنبعثة من مصباح بخار الصوديوم هي الكبر بمرتين من القدرة  $P_2$  المنبعثة من مصباح بخار الصوديوم هي الكبر بمرتين من القدرة  $P_2$  المنبعثة من مصباح بخار الصوديوم الكبر بمرتين من القدرة  $P_2$  المنبعثة من المنبعثة من المنبعثة الكبر بمرتين من القدرة  $P_2$  المنبعثة من المنبعثة الكبر بمرتين من القدرة  $P_2$  المنبعثة المنبعثة الكبر بمرتين من القدرة  $P_2$  المنبعثة الكبر بمرتين من القدرة الكبر بمرتين من المنبعث الكبر بمرتين الكبر بمرتين من القدرة الكبر بمرتين الكبر بمرتين
  - .  $P_1 = 4 \text{ W}$ . برهن ان (1-7-7)
  - $\lambda_1$  اوجد عدد فوتونات الاشعاعات بطول موجي  $\lambda_1$  المنبعثة من مصباح بخار الصوديوم بالثانية.

#### التمرين الثالث: (٧علامات) التداخل الضوئي

 $[S_1S_2]$  يظهر المستند ١ جهاز شقوق' $[S_1S_2]$  .  $[S_1S_2]$  يبعث مدر  $[S_1S_2]$  ، ضوأ موحداً

طول موجته  $\lambda = 500 \text{ nm}$  في الهواء ، وهو موضوع أمام  $P \cdot S_1 \text{ and } S_2$  هي نقطة في منطقة التداخل التي حصلنا عليها على

$$S_1$$
 على المحور  $X = \overline{OP}$  على المحور  $X = \overline{OP}$  على المحور  $X = \overline{OP}$  على and  $X = \overline{OP}$  على المحور "a" ،

، "a", هي and S<sub>2</sub>

والمسافة الفاصلة بين الشاشة ُ E وسطح الشقين هي D. معطى :

. 
$$S_2P - S_1P = \frac{a x}{D}$$
.

فرق المسرى البصري بالنقطة P هو  $SS_2P-SS_1P$ . الهدف من هذا التمرين هو ايجاد قيم a" and D . " a

1) وضع S على Ol كما هو مبين في المستند ١، في هذه الحالة يكون

 $\delta = \frac{a x}{D}$  هو P فرق المسرى البصري بالنقطة

١-١ ) برهن أن النقطة Оهي مركز الهدبة المضاءة المركزي.

٢-١) أوجد صيغة إحداثية مركز الهدبة المظلمة برتبة K .

a, λ and D كدالة من (inter-fringe) كدالة من - ("-") استنتج صيغة i بين الهدبين المنتاليين (1-1)

۱-٤) يقوم جهاز خاص بتسجيل شدة الإضاءة الآتية من S والمتلقاة على الشاشة E كدالة من X .

يظهر الرسم البياني للمستند ٢ الشدة كدالة من x بين النقطتين . A and B

اعتماداً على المستند ٢:

۱-٤-۱) حدد عدد الهدب المضاءة بين A and B

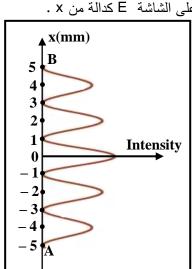
١-٤-١) أكتب صيغة المسافة AB كدالة منi .

۱-٤-۲) حدد رتبة وطبيعة الهدبة التي مركزها هو النقطة B .

١-٤-٤) أعط قيمة احداثي مركز أول هدبة مظلمة من الجهة الموجية لـ 0.

. D = 4000 a (in SI units) استنتج أن

٢) بوجد المركز الضوئي S على مسافة d من سطح الشقين، أزيح S مسافة z من جهة  $S_1$  ، باتجاه متعامد مع (IO)ومتوازي مع سطح الشقين .


 $SS_2 - SS_1 = \frac{az}{d}$ . : معطى

.  $\delta = \frac{az}{d} + \frac{ax}{D}$ . وهو المسرى البصري بنقطة P هو المسرى البصري بنقطة المسرى المسرى البصري بنقطة المسرى المسرى

٢-٢) استنتج صيغة احداثي مركز الهدبة المضاءة المركزية.

٣-٢) لاحظنا أن المركز الجديد للهدبة المضاءة المركزية يتطابق مع الموضع الذي كان يشغله مركز الهدية المضاءة .d = 40 cm and z = 0.4 cm : معطیات . S قبل انزیاح S قبل انزیاح

۱-۳-۲) أوجد قيم ۱-۳-۲



Doc. 1

Doc. 2

### التمرين الرابع (٥. ٧ علامات) مميزات وشيعة (ملف كهربائي)

الهدف من هذا التمرين هو ايجاد مميزات وشيعة. من اجل ذلك اعتمدنا داره المستند التي تحتوي على وشيعه محاثتها L ومقاومتها r, مكثف غير مشحون مسبقا سعته C ،مولد توتر كهربائي مثالي e.m.f E ،مبدل K وأمبرميتر (A) مقاومته مهمله.

#### ١ -التجربه الاولى

وضعنا K على الموضع المحظه  $t_0=0$  . يشير الامبرميتر (A) الى تيار يزيد من الصفر الى قيمته القصوى  $t_0=0.1$  .

وصل التيار الى الحالة الدائمة.

'-١ ) سمّ الظاهرة التي تحدث خلال نشوء التيار في الوشيعة.

E, R and r. كدالة من كدالة من التوترات الكهربائية، صيغة (  $I_0$ 

۳-۱ ) يقوم جهاز خاص بتسجيل التوتر upb على طرفى الوشيعة كدالة زمنية كما يشير منحنى المستند ٢.

١-٣-١) مطبقاً قانون جمع التوترات ومستخدماً منحنى المستند ٢، برهن

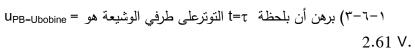
E = 4.5 V ان

۱-۳-۲) مستخدماً منحنى المستند ۲، برهن أن قيمة المقاومة r غيرمعدومة.

.  $r=15\Omega$  استنتج أن (7-7-1)

. R=30 Ω برهن أن 2 -1

١-٥ ) أوجد، مطبقاً قانون جمع التوترات ، المعادلة التفاضلية التي تحكم

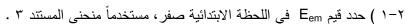

تطور التيار i كدالة زمنية ،

الحل لهذه المعادلة التفاضلية هو ( $\tau=I_0(1-e^{rac{-t}{ au}})$  هو ثابت  $\tau$  الحل لهذه المعادلة التفاضلية ا

L, r and R کدالة من τ أوجد صبيغة τ

ا على طرفي  $u_R=u_{MN}$  أوجد بلحظة t= au قيمة التوتر

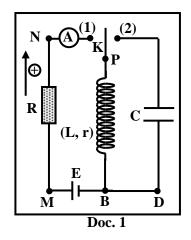
الناقل الأومى .

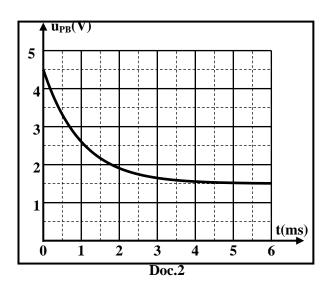


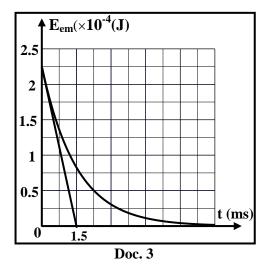

.  $\tau$  استنتج، مستخدماً المستند ۲ قیمه  $\tau$ 

۱-۷) أحسب قيمة L.

## ٢ – التجربة الثانية:


عندما يصل التيار في الوشيعة الى الحالة الدائمة  $(i=I_0)$  ، نبدل k بسرعة من الموضع (۱) الى الموضع (۲) بلحظة k ، التي تؤخذ كمنطلق جديد للزمن. الطاقة الكهرومغناطيسية في الدارة هي : k عناطيسية الكهرومغناطيسية ومنية يقوم جهاز خاص برسم منحنى الطاقة الكهرومغناطيسية k كدالة زمنية k ، والمماس على المنحنى بلحظة k k (مستند k).





۲-۲) استتج قیمهٔ L .

٣-٢ ) أحسب انحدار المماس .

$$rac{dE_{em}}{dt}$$
 =  $r$   $i^2$  استنتج قیمهٔ  $r$  اذا کان (٤-۲





