ملاحظة: - يسمح باستعمال آلة حاسبة غير قابلة للبرمجة او اختزان المعلومات او رسم البيانات.

- يستطيع المرشّح الإجابة بالترتيب الذي يناسبه (دون الالتزام بترتيب المسائل الواردة في المسابقة).

I- (5 points)

1) Solve the following system of equations:

$$\begin{cases} x + y = 90\ 000 \\ 0.9x + 0.8y = 76\ 000 \end{cases}$$

- 2) A uniform consists of a shirt and a pant. This uniform is sold for 90 000 LL. During the sale period, the price of the shirt is decreased by 10 % and that of the pant is decreased by 20 %. The new price of the uniform is then 76 000 LL.
 - a- Show that the previous text is modeled by the system of equations given above.
 - b- Determine the price of the shirt and that of the pant before the sale period.
- a- What is the price of the shirt and that of the pant during the sale period?b- If Walid has 270 000 LL, what is the greatest number of uniforms that he can buy during the sale period? Justify.

II- (5 points)

In a school there are 200 students in the secondary division. These students are distributed as shown in the following table:

	1 st year	2 nd year	3 rd year	Total
Girls	22	35	21	78
Boys	46	36	40	122
Total	68	71	61	200

1) A student is randomly selected from these 200 students. Calculate the probability of each of the following events:

A: « the selected student is a boy in the 1st year secondary »;

B: « the selected student is a boy knowing that he is in the 2nd year secondary »;

C: « The selected student is in the 3rd year secondary or he is a boy».

- 2) The selected student is not from the 1st year secondary. Calculate the probability that this student is a girl.
- 3) The names of these 200 students are written on cards and placed in a box. Two cards are randomly selected from this box one after another without replacement. Calculate the probability that these two cards have the names of two students in the 3rd year secondary.

III- (10 points)

The following table represents the variation of a function f. Denote by (C) the representative curve of f in an orthonormal system $\left(O; \vec{i}, \vec{j}\right)$.

- 1) a- Determine the domain of definition of f.
 - b- Determine $\lim_{\substack{x \to 1 \\ x < 1}} f(x)$ and $\lim_{\substack{x \to 1 \\ x > 1}} f(x)$. Deduce an equation of an asymptote (d) to (C).
 - c- Determine $\lim_{x \to -\infty} f(x)$ and $\lim_{x \to +\infty} f(x)$.
- 2) a- Determine f(-1) and f'(3).
 - b- What is the sign of f'(4)? Justify your answer.
- 3) Solve each of the following inequalities:
 - a- $f(x) \le 1$.
 - b- f'(x) > 0.
- 4) Compare f(1.5) and f(2). Justify your answer.
- 5) The function f is defined as $f(x) = x 1 + \frac{b}{x 1}$.
 - a- Calculate b.
 - b- Prove that the straight line (D) with equation y = x 1 is an asymptote to (C).
- 6) Verify that f'(0) = -3, then write an equation of (T), the tangent to (C) at the point with abscissa 0.
- 7) Draw (d), (D), (T) and (C).

عدد المسائل: ثلاث

أسس التصحيح - مادة الرياضيات

QI	Correction	Note
1	x = 40000 and $y = 50000$	1
2a	x + y = 90000; $(1 - 0.1)x + (1 - 0.2)y = 76000$	1 1/2
2b	the initial price of a shirt is 40000 LL; the initial price of a pant is 50000 LL.	1/2
3a	During the sales: the price of a shirt is $40000 \times 0.9 = 36000$ LL; the price of a pant is $50000 \times 0.8 = 40000$ LL.	1
3b	The price of a uniform is : $36000 + 40000 = 76000 \text{ L.L}$ $270\ 000 \div 76\ 000 = 3.55$ Walid can buy 3 uniforms. $270000 > (3 \times 76000 = 218000 \text{ L.L})$	1

QII	Correction	
1	$P(A) = \frac{46}{200} = 0.23 \; ; \; P(B) = P(G/2S) = \frac{36}{71} \; ; \; P(C) = \frac{122 + 61 - 40}{200} = \frac{143}{200} = 0.715$	3
2	$P\left(\frac{F}{\overline{1S}}\right) = \frac{p(F \cap \overline{1S})}{p(\overline{1S})} = \frac{56}{132} = \frac{14}{33}$	1
3	$p (the names of 2 students in 3rd year) = \frac{61}{200} \times \frac{60}{199} = \frac{3660}{39800} = \frac{183}{1990}$	1

QIII	Correction	Note
1a	$D =]-\infty; 1[\cup]1; +\infty[$	1/2
1b	$\lim_{\substack{x \to 1 \\ x < 1}} f(x) = +\infty \qquad \lim_{\substack{x \to 1 \\ x > 1}} f(x) = -\infty \qquad x = 1 \text{ vertical asymptote}$	3/4
2a	f(-1) = 4 ; $f'(3) = 0$	1/2
2b	$f'(4) < 0$ since $f'(x) < 0$ for $x \in]3; +\infty[$	1/2
3	$f(x) \le 1 \text{ when } x \in]1; +\infty[$ $f'(x) > 0 \text{ when } x \in]-1; 1[\cup]1;3[$	1 1
4	$f(4) > f(5)$ since f is decreasing over] 3; $+\infty$ [
5a	f(-1) = 4 so b = -4	1
5b	$\lim_{\substack{x\to +\infty\\ x\to -\infty}} [f(x)-(-x+1)] = \lim_{\substack{x\to +\infty\\ x\to -\infty}} \frac{-4}{x-1} = 0 \text{Hence } y=-x+1 \text{ is an oblique asymptote to (C)}.$	3/4
5c	$f'(x) = -1 - \frac{4}{(x-1)^2}$ $f'(0) = -5.$	1
6	y = f'(0)(x - 0) + f(0) so $y = -5x + 5$	1/2

