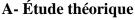
دورة سنة ۲۰۰۸ العادية	امتحانات الشهادة الثانوية العامة فرع العلوم العامة	وزارة التربية والتعليم العالي المديرية العامة للتربية دائرة الامتحانات
الاسم: الرقم:	مسابقة في مادة الفيزياء المدة ثلاث ساعات	

Cette épreuve est formée de quatre exercices répartis sur quatre pages numérotées de 1 à 4. L'usage d'une calculatrice non programmable est autorisé.

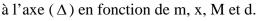
Premier exercice (7,5 points) Pendule pesant

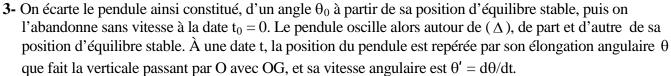
Un pendule pesant est composé d'une tige AB, de masse négligeable, pouvant osciller, sans frottement, dans un plan vertical , autour d'un axe horizontal (Δ) passant par un point O de la tige; on pose OB = d. On fixe au point B une particule de masse M, supposée ponctuelle, et, sur la partie OA de la tige, peut glisser une particule C de masse m < M, située à une distance OC = x de valeur réglable. Soit a = OG, la distance entre O et le centre de gravité G du pendule (Fig.1). Le niveau de référence de l'énergie potentielle de pesanteur est le plan horizontal passant par O. $g = 10 m/s^2$; $\pi^2 = 10$; $\sin \theta = \theta$ et $\cos \theta = 1$ - $\frac{\theta^2}{2}$, (θ en rad) pour $\theta < 10^\circ$.



1- Montrer que la position de G est donnée par $a = \frac{Md - mx}{(M+m)}$.

2- Trouver l'expression du moment d'inertie I du pendule par rapport





- a) Écrire, à l'instant t, l'expression de l'énergie cinétique du pendule en fonction de I et θ' .
- **b**) Montrer que l'expression de l'énergie potentielle de pesanteur du système (pendule, Terre) est $E_P = -(M+m)$ g a $\cos\theta$.
- c) Écrire l'expression de l'énergie mécanique du système (pendule, Terre) en fonction de M, m, g, a, θ , I et θ' .
- **d**) Établir l'équation différentielle du second ordre en θ qui régit le mouvement du pendule.
- e) Déduire que l'expression de la période propre, pour les faibles oscillations, s'écrit sous la forme :

$$T=\,2\pi\sqrt{\frac{I}{(M+m)ga}}\;.$$

f) Trouver l'expression de la période T, en fonction de M, m, d, g et x.

B- Application : métronome

Un métronome est un instrument permettant de régler la vitesse avec laquelle doit être jouée une musique. Le pendule pesant étudié dans la partie A représente un métronome où $M=50~g,\,m=5~g$ et d=2~cm. Le graphique de la figure 2 représente les variations de la période T de ce métronome en fonction de la distance x.

- 1) Trouver, dans ce cas, l'expression de la période T du métronome en fonction de x.
- 2) Le chef de l'orchestre, se référant au métronome pour jouer une répartition, déplace C le long de OA, pour avoir le rythme de la pièce musicale. Le rythme est indiqué par des termes hérités de l'italien pour les partitions classiques :

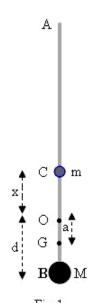
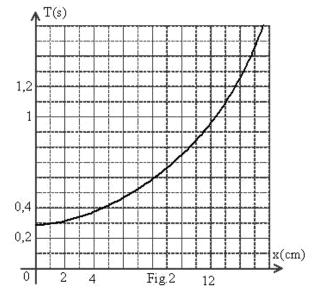


Fig. 1

Nom	Indication	Période (en s)
Grave	Très lent	T = 1,5
Lento	Lent	$1 \le T \le 1,1$
Moderato	Modérément	$0.6 \le T \le 0.75$
Prestissimo	Très rapide	$0.28 \le T \le 0.42$

Déterminer, par une méthode de votre choix, les positions entre lesquelles, le chef de l'orchestre peut déplacer C, pour régler la vitesse au rythme **Lento**.



Deuxième exercice (7,5 points) Détermination de la capacité d'un condensateur

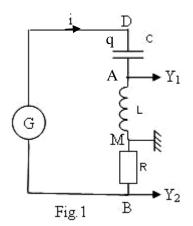
Dans le but de déterminer la capacité C d'un condensateur, on réalise deux expériences.

A- Première expérience

On place le condensateur en série, dans un circuit comportant une bobine d'inductance L = 0.32 H, un conducteur ohmique de résistance $R = 100\Omega$ et un générateur G (GBF) délivrant, entre ses bornes, la tension alternative sinusoïdale:

$$u_g = u_{DB} = 8\sin(100 \,\pi \,t - \frac{\pi}{3}) \,(u_g \text{ en V ; t en s}) \,(\text{Fig.1}).$$

Le circuit est alors parcouru par un courant alternatif sinusoïdal d'intensité $i = I_m \sin(100 \pi t)$, (i en A; t en s).

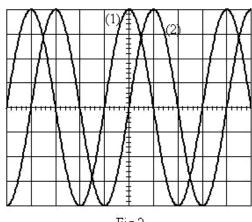


Un oscilloscope, branché dans le circuit, permet de visualiser, sur la voie Y₁, la tension aux bornes de la bobine $u_b = u_{AM}$ et, sur la voie Y_2 , la tension aux bornes du conducteur ohmique $u_R = u_{MB}$; le bouton « Inv » (inversion) de la voie Y₂ est enfoncé.

Sur l'écran de l'oscilloscope, on observe les oscillogrammes (1) et (2) représentés sur la figure 2. La sensibilité verticale S_v est la même sur les deux voies : $S_v = 1 \text{ V/div.}$ (0,32 $\pi = 1$).

- 1) Pourquoi a-t-on enfoncé le bouton« Inv »?
- 2) En se référant à la figure 2 :
 - a) déterminer la sensibilité horizontale S_h adoptée sur l'oscilloscope.
 - **b**) déterminer le déphasage entre u_b et u_R.
 - c) laquelle des deux tensions est en avance de phase sur l'autre?
 - **d**) déduire que la bobine a une résistance négligeable.
 - e) déterminer la valeur de I_m.
- 3) Déterminer l'expression de u_b en fonction du temps
- 4) Montrer que l'expression de la tension $u_c = u_{DA}$ est :

$$u_c = -\frac{I_m}{100\pi C}\cos(100\pi t).$$



5) En appliquant la loi d'additivité des tensions et en donnant à t une valeur particulière, déterminer la valeur de C.

B- Deuxième expérience

Le condensateur, initialement chargé, est branché, maintenant, aux bornes de la bobine d'inductance L = 0,32 H (Fig.3).

L'oscilloscope, réglé sur la sensibilité horizontale $S_h = 2$ ms/div, permet de visualiser la

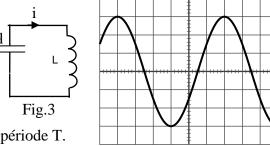


Fig.4

- tension u_C aux bornes du condensateur (Fig.4).
 1) a) Montrer que la tension u_C est sinusoïdale de période T.
 - b) Déterminer T en fonction de L et C.
- 2) Calculer la valeur de C.

Troisième exercice (7,5 points) Indice de réfraction d'un verre

On dispose d'une lame de verre à faces parallèles d'épaisseur $e=5~\mu m$ et d'indice n, et d'une source S, de lumière blanche, munie d'un filtre de façon que le dispositif des fentes de Young reçoive de la lumière monochromatique de longueur d'onde λ dans l'air de valeur réglable. Le but de cet exercice est d'étudier comment varie la valeur de n en fonction de λ .

A- Interférences lumineuses – Interfrange

Le dispositif des fentes de Young est constitué de deux fentes F_1 et F_2 très fines, parallèles et distantes de a=0,1 mm, et d'un écran d'observation (E) disposé parallèlement au plan des fentes à une distance D=1 m de ce plan.

- 1) F₁ et F₂ sont éclairées par une radiation monochromatique de longueur d'onde λ provenant de S placée à égale distance de F₁ et F₂
 - **a)** F₁ et F₂ jouissent de deux propriétés essentielles pour qu'un phénomène d'interférences observable ait lieu. Lesquelles ?
 - b) Décrire le système des franges obtenu sur (E).
 - c) Au point O de l'écran, équidistant de F_1 et F_2 , on observe une frange brillante. Pourquoi ?
- 2) On admet qu'en un point M de (E), tel que OM = x, la différence de marche optique dans l'air ou dans le vide est

donnée par :
$$\delta = F_2M - F_1M = \frac{ax}{D}$$

- a) Déterminer l'expression de x_k correspondant au centre de la $k^{\text{ème}}$ frange brillante.
- **b**) En déduire l'expression de l'interfrange i en fonction de λ , D et a.

B- Interposition de la lame

On place maintenant, la lame de verre, juste derrière la fente F_1 . c et v sont, respectivement, les vitesses de propagation de la lumière dans le vide (pratiquement dans l'air) et dans la lame.

- 1) La lumière traverse la lame d'épaisseur e pendant la durée τ . Exprimer τ en fonction de e et v.
- 2) Exprimer la distance d, parcourue par la lumière dans l'air pendant la durée τ , en fonction de n et e.
- 3) Déduire que la nouvelle différence de marche optique au point M est donnée par :

$$\delta' \; = \; F_2 M \;\; - \;\; F_1 M \; = \; \frac{ax}{D} - e(n-1).$$

C- Mesure de n

N.B:

- L'interposition de la lame ne modifie pas l'expression de l'interfrange i.
- Dans cette question, le calcul de n doit être fait avec 3 chiffres après la virgule.

- 1) F_1 et F_2 sont éclairées par la radiation rouge, de longueur d'onde $\lambda_1 = 768$ nm, provenant de S. Le centre de la frange centrale se forme en O', position occupée par le centre de la $4^{\text{ème}}$ frange brillante en l'absence de la lame. Déterminer la valeur n_1 de l'indice de la lame.
- 2) F_1 et F_2 sont éclairées par la radiation violette, de longueur d'onde $\lambda_2 = 434$ nm, provenant de S. Le centre de la frange centrale se forme en O'', position occupée par le centre de la $8^{\text{ème}}$ frange sombre en l'absence de la lame. Déterminer la valeur n_2 de l'indice de la lame.
- 3) Peut-on alors parler de valeur d'indice de réfraction d'un milieu transparent donné sans tenir compte de la radiation utilisée ? Pourquoi ?

Quatrième exercice (7,5 points) Fission nucléaire

Le but de cet exercice est de mettre en évidence certaines propriétés de la fission nucléaire.

Données: $1u = 1,66 \times 10^{-27} \text{Kg}$; $c = 3 \times 10^8 \text{ms}^{-1}$; masse d'un neutron : $m({}_0^1 n) = 1,008u$.

Masses des noyaux : $m(^{235}U) = 234,964 \text{ u}; m(^{92}Zr) = 91,872 \text{ u}; m(^{142}Te) = 141,869 \text{ u}.$

A- Énergie de la fission

L'une des réactions de fission de l'uranium 235, dans une centrale nucléaire, peut s'écrire sous la forme :

$$\label{eq:controller} ^{235}_{92}U \ + \ ^1_0 n \ \to \ ^{92}_{40}Z_r \ + \ ^{142}_{\ Z}T_e \ + \ x_0^{\ 1} n \ .$$

- 1) Déterminer Z et x en précisant les lois utilisées.
- 2) Calculer l'énergie produite par la fission d'un noyau d'uranium 235.
- 3) Déterminer la masse d'uranium 235 utilisée pour faire fonctionner cette centrale durant une année, sachant qu'elle fournit une puissance électrique de 900 MW, et que son rendement est égal à 30 %.

B- Produits de la fission

Parmi les produits de la fission, on trouve, dans le cœur de la centrale nucléaire, les radioéléments $^{137}_{55}$ Cs et $^{87}_{37}$ Rb de périodes respectives 30 ans et 5×10^{11} ans. Ces radioéléments sont placés dans une piscine dite de refroidissement, chacun des noyaux $^{137}_{55}$ Cs et $^{87}_{37}$ Rb ayant respectivement la masse 137 u et 87 u.

- 1) On suppose qu'on a introduit dans la piscine 1 g de chacun des radioéléments à la date $t_0 = 0$.
 - a) Calculer le nombre des noyaux de chaque radioélément à la date $t_0 = 0$.
 - **b**) Déduire le nombre des noyaux qui restent, de chaque radioélément, au bout de 3 ans de séjour dans la piscine.
 - c) Déterminer le nombre des désintégrations par jour de chaque radioélément, au moment de la sortie de la piscine (3 ans après).
- 2) Si on admet que, pour l'homme, le danger d'un radioélément est fonction des radiations cumulées par jour, quel est, parmi les deux, le radioélément le plus dangereux ? Justifier.

C- Probabilité de la fission

Dans un dictionnaire de physique, on peut lire que la probabilité pour un noyau A_ZX d'être fissile est proportionnelle au rapport $\frac{Z^2}{A}$, nommé facteur de stabilité du noyau. Cette probabilité n'est plus nulle dès que ce rapport dépasse 35.

- 1) Que représentent Z et A pour un nucléide ^A_ZX ?
- 2) Montrer qu'un noyau doit contenir un nombre de neutrons N tel que $N < \frac{Z(Z-35)}{35}$, pour que sa probabilité d'être fissile soit non nulle.
- 3) Trouver le nombre maximum de nucléons que doit contenir un noyau d'uranium, où Z = 92, pour avoir une probabilité non nulle de subir une fission.

دورة سنة ۲۰۰۸ العادية	امتحانات الشهادة الثانوية العامة فرع العلوم العامة	وزارة التربية والتعليم العالي المديرية العامة للتربية دائرة الامتحانات
الاسم: الرقم:	مسابقة في مادة الفيزياء المدة ثلاث ساعات	مشروع معيار التصحيح

Partie de la Q.	Corrigé	Note
	Premier exercice (7.5 points)	
A.1	$(M-m)\overrightarrow{OG} = M\overrightarrow{OB} + m\overrightarrow{OC} \implies a = \frac{Md - mx}{M + m}.$	0.75
A.2	$I = I_M + I_m = Md^2 + mx^2.$ $E_C = \frac{1}{2} I \dot{\theta}^2.$	0.50
A.3.a	$E_{\rm C} = \frac{1}{2} I \dot{\theta}^2$.	0.50
A.3.b	$E_{PP} = -(M+m)gh = -(M+m)gacos \theta$ $h = -G$	1.00
A.3.c	$E_{\rm m} = E_{\rm C} + E_{\rm PP} = \frac{1}{2} I \dot{\theta}^2 - (M+m) ga\cos\theta .$	0.25
A.3.d	$\frac{dE_{m}}{dt} = 0 = I\dot{\theta}\ddot{\theta} + (M+m)ga\dot{\theta}\sin\theta \Rightarrow \ddot{\theta} + \frac{(M+m)ga}{I}\sin\theta = 0.$	1.00
A.3.e	Pour θ faible, $\sin \theta = \theta \Rightarrow \ddot{\theta} + \frac{(M+m)ga}{I}\theta = 0$ $\Rightarrow \text{La pulsation propre est } \omega = \sqrt{\frac{(M+m)ga}{I}};$ $\text{La période propre est } T = \frac{2\pi}{\omega} \Rightarrow T = 2\pi \sqrt{\frac{I}{(M+m)ga}}.$	1.25
A.3.f	$T = 2\pi \sqrt{\frac{Md^2 + mx^2}{g(Md - mx)}}.$	0.75
B.1	$T = \sqrt{\frac{0.08 + 20x^2}{1 - 5x}} \ .$	0.50
B.2	Graphiquement ou par le calcul : Pour T = 1 s , x = 12,3 cm. pour T = 1,1 s, x = 13 cm. \Rightarrow 12,3< x(cm) < 13	1.00
	Deuxième exercice (7.5 points)	
A.1	Pour éliminer l'opposition de phase obtenue suite à la manière de la connexion de la bobine et du conducteur ohmique à l'oscilloscope. (ou bien : l'oscilloscope, tel qu'il est branché visualise u _{BM} , et	0.25

	comme on voudrait visualiser u _{MB} , il faut alors enfoncer le bouton	
	inversion.) La pulsation de la tension est $\omega = 100 \pi$ rad/s; or la période est :	
A.2.a	The parameter of the tension est $\omega = 100 \pi$ rad/s, or in periode est: $T = \frac{2\pi}{\omega} = 0.02 \text{s} = 20 \text{ms};$ $T \text{ couvre 4 divisions sur l'écran} \implies S_h = \frac{20}{4} = 5 \text{ms/div}$	0.75
A.2.b	T couvre 4 divisions qui correspondent à un angle de 2π rad, le déphasage φ est représenté par 1 division $\Rightarrow \varphi = \frac{2\pi \times 1}{4} = \frac{\pi}{2}$ rad.	0.75
A.2.c	u_b est en avance sur u_R .	0.25
A.2.d	Car la tension aux bornes d'une bobine de résistance nulle est en avance de $\frac{\pi}{2}$ sur le courant traversant la bobine.	0.50
A.2.e	$RI_{m} = 4 \operatorname{div} \times 1V / \operatorname{div} = 4V \Longrightarrow I_{m} = \frac{4}{100} = 0.04A.$	0.50
A.3	$u_b = L \frac{di}{dt} = 0.32 \times 0.04 \times 100 \pi \cos(100 \pi t) = 4\cos(100 \pi t).$	0.75
A.4	$\begin{split} i &= \frac{dq}{dt} = C \frac{du_C}{dt} \Rightarrow u_C = \frac{1}{C} \times primitivei = -\frac{I_m}{100\pi C} cos(100\pi t) \implies \\ u_C &= -\frac{1,28 \times 10^{-4}}{C} cos(100\pi t) . \end{split}$	0.75
A.5	$\begin{aligned} u_g &= u_C + u_b + u_R \Longrightarrow \\ 8\sin(100\pit - \frac{\pi}{3}) &= -\frac{1,28 \times 10^{-4}}{C}\cos(100\pi t) + 4\cos(100\pi t) + 4\\ \sin(100\pit) \\ Pour\ t &= 0\ on\ a: -4\sqrt{3} = -\frac{1,28 \times 10^{-4}}{C} + 4 + 0 \implies C = 11,7 \times 10^{-6}\ F. \end{aligned}$	1.25
B.1.a	$u_C = u_b \Rightarrow u_C = L(\frac{di}{dt}) = -L\ddot{q} = -LC\ddot{u}_C \Rightarrow \ddot{u}_C + \frac{1}{LC}u_C = 0 \Rightarrow la$ solution d'une telle forme d'équation différentielle est sinusoïdale de période T.	0.50
B.1.b	La pulsation ω du mouvement est telle que $\omega^2 = \frac{1}{LC} \Rightarrow \omega = \frac{1}{\sqrt{LC}}$; la période est $T = \frac{2\pi}{\omega} = 2\pi\sqrt{LC}$.	0.50
B.2	D'après l'oscillogramme de la figure 4 on a $T = 6 \text{ div} \times 2 \text{ms} / \text{div} = 12 \text{ ms} = 0,012 \text{s}.$ $C = \frac{T^2}{4\pi^2 L} = \frac{144 \times 10^{-6}}{12,5} = 11,5 \times 10^{-6} \text{ F}.$	0.75
	Troisième exercice (7.5 points)	

A.1.a	F ₁ et F ₂ doivent être synchrones et cohérentes.	0.5
11.1.4	Les franges d'interférences sont des bandes équidistantes,	9. 2
A.1.b	alternativement brillantes et sombres. Ces franges sont parallèles aux fentes.	0.75
A.1.c	On a $\delta=0$ alors les radiations provenant de F_1 et F_2 arrivent on O et elles sont en phase, d'où en O se forme une frange brillante.	0.50
A.2.a	Pour les franges brillantes : $\delta = k\lambda$; $\frac{ax}{D} = k\lambda \Rightarrow x_k = \frac{k\lambda D}{a}$;	0.50
A.2.b	or $i = x_{k+1} - x_k = \frac{\lambda D}{a}$.	0.50
B.1	$\tau = \frac{e}{v}$	0.50
B.2	$d = c\tau = c\frac{e}{v} = ne$	0.50
В.3	l'augmentation du chemin optique pour la lumière qui traverse la lame est : ne $-e = e(n-1)$ $\delta' = F_2M - (F_1M + e(n-1) = \frac{ax}{D} - e(n-1)$	1.00
C.1	Pour la frange centrale : $\delta' = 0 \Rightarrow \frac{ax_0}{D} - e(n_1 - 1) = 0$; $\Rightarrow \frac{ax_0}{D} = e(n_1 - 1) \text{ ; tel que } x_0 = 4i_1 = 4\frac{\lambda_1 D}{a} \Rightarrow n_1 = 1 + \frac{4\lambda_1}{e} = 1,614$	1.25
C.2	$x_0 = 7.5 i_2 \implies n_2 = 1 + \frac{7.5\lambda_2}{e} = 1,651$	0.75
C. 3	Non: $\lambda_1 \neq \lambda_2 \Rightarrow n_1 \neq n_2$ Oui: $\lambda_1 \neq \lambda_2 \Rightarrow n_1 \sqcup n_2$	0.75
	Quatrième exercice (7.5 points)	
A.1	$^{235}_{92}$ U + $^{1}_{0}$ n \rightarrow $^{92}_{40}$ Zr + $^{142}_{Z}$ Te + $^{14}_{0}$ n Conservation du nombre de masse : 235 + 1 = 92 + 142 + x \Rightarrow x = 2 Conservation du nombre de charge : 92 = 40 + Z \Rightarrow Z = 52.	1.00
A.2	Conservation du nombre de charge : $92 = 40 + Z \implies Z = 52$. $\Delta m = 234,964-91,872-141,869 - 1,008 = 0,215$ u soit $3,57 \times 10^{-28}$ kg. $E = \Delta m.c^2 = 3,21 \times 10^{-11} J$.	1.25
A.3	$\begin{split} E_1 &= \frac{9 \times 10^8}{0,3} = 3 \times 10^9 \text{ J/s.} \\ \text{L'énergie pour 1 année} &: 3 \times 10^9 \times 365 \times 24 \times 3600 = 9,46 \times 10^{16} \text{ J.} \\ \text{Le nombre des noyaux fissionnés} &: \\ \frac{9,46 \times 10^{16}}{3,21 \times 10^{-11}} &= 2,947 \times 10^{27} \text{ noyaux} \\ \text{La masse} &: 2,947 \times 10^{27} \times 234,964 \times 1,66 \times 10^{-27} = 1149,4 \text{ kg.} \end{split}$	1.25

B.1.a	$N_0(\text{ Cs }) = \frac{1}{137 \times 1,66 \times 10^{-24}} = 4,4 \times 10^{21} \text{ noyaux.}$ $N_0(\text{ Rb }) = \frac{1}{87 \times 1,66 \times 10^{-24}} = 6,9 \times 10^{21} \text{ noyaux}$	0.50
B.1.b	$N = N_0 e^{-\frac{0.693 \cdot t}{T}} \Rightarrow N(Cs) = 4.1 \times 10^{21} \text{ noyaux.}$ $N (Rb) = 6.89 \times 10^{21} \text{ noyaux.}$	0.75
B.1.c	Nombre des désintégrations par jour = λN (λ : j ⁻¹) Pour le Cs : $\frac{0.693 \times 4.1 \times 10^{21}}{30 \times 365}$ = 2.6×10^{17} . Pour le (Rb) : $\frac{0.693 \times 6.89 \times 10^{21}}{5 \times 10^{11} \times 365}$ = 2.6×10^{7} .	1.00
B.2	Le produit le plus dangereux est le Cs, car il a le taux de désintégrations le plus grand.	
C.1	Z est le nombre de charge, et A est le nombre de masse.	0.25
C.2	$\frac{Z^2}{A} > 35 \implies \frac{Z^2}{Z + N} > 35$ $\Rightarrow Z(Z-35) > 35 N \implies N < \frac{Z(Z-35)}{35}.$	0.75
C.3	$\frac{Z^2}{A} > 35 \implies A < \frac{Z^2}{35} = \frac{(92)^2}{35} \approx 242.$	0.50