الاسم:	مسابقة في مادة الرياضيات	*
الرقم:	المدة ساعتان	عدد المسائل: ستة

ارشادات عامة : يسمح باستعمال آلة حاسبة غير قابلة للبرمجة او اختزان المعلومات او رسم البيانات.

- يستطيع المرشح الإجابة بالترتيب الذي يناسبه دون الالتزام بترتيب المسائل الوارد في المسابقة .

I- (3 points)

In the table below, only one of the proposed answers to each question is correct. Write down the number of each question ,and give with justification, its corresponding answer.

\mathbf{N}^0	Question	Proposed answers		
IN	Question	a	b	c
1	In an orthonormal system, the two lines with equations $y = 2x + 3$ and $2y + x = 1$ are	intersecting at the point (1,5)	perpendicular	parallel
2	The original price of an article is 30 000 LL, and its price after the discount is 27 600 LL. The percentage of discount is	10 %	18 %	8 %
3	A triangle ABC is right at B. If AB=3 and $\overrightarrow{A}CB = 40^{\circ}$, then AC =	$\frac{3}{\sin 40^{\circ}}$	$3\sin 40^{\circ}$	$\frac{\sin 40^{\circ}}{3}$
4	The natural numbers, solutions of 3x-1<8 are	1 ;2 ;3	0;1;2;3	0;1;2
5	A triangle ABC is right at A and M is the midpoint of [BC]. If AM = AB = 6 then AC =	12	$6\sqrt{3}$	$9\sqrt{3}$
6	ABCD is a parallelogram and E is the translate of D under the translation with vector \overrightarrow{BA} . Therefore	C is the midpoint of [DE]	$\overrightarrow{DB} + \overrightarrow{DE} = \overrightarrow{DA}$	$\overrightarrow{DE} + \overrightarrow{DA} = \overrightarrow{DB}$

II-(2 points)

Consider the three numbers A, B and C:

A =
$$(\sqrt{5} + 1)^2 + (\sqrt{5} - 1)^2$$
; B = $\frac{3}{4} + \frac{5}{4} \times \frac{7}{15}$ and C = $\frac{(10\sqrt{3})^4}{25 \times 10^3 \times 3 + 10^3 \times 6 \times 37.5}$

In the following questions, the steps of calculation must be shown

- 1) Prove that A is a natural number.
- 2) Write B as a fraction in its simplest form.
- 3) Prove that C is a decimal number.

III- (2 points)

In what follows, are the scores of a student in five tests: 10; 8; 13; x and y.

The difference between x and y is 7. The average (mean) of these five scores is 12.

- 1) Write a system of two equations with two unknowns modeling the given situation.
- 2) Solve the obtained system.

IV- (3 points)

Consider the expressions: $A(x) = 4x^2 - 9$ and $B(x) = (2x - 3)^2 - (2x - 3)(x - 5)$.

- 1) Factorize A(x).
- 2) **a-** Verify that B(x) = (2x 3)(x + 2).
 - **b-** Solve the equation B(x) = 0.
- 3) Consider the expression $F(x) = \frac{A(x)}{B(x)}$.
 - **a.** For what values of x, F(x) is defined ?
 - **b.** Simplify F(x) and solve F(x) = 3.
 - **c.** Calculate $F(\sqrt{5})$ and write the answer in the form $a-b\sqrt{5}$. (a and b are natural numbers)

V- (5 points)

In an orthonormal system of axes x'Ox, y'Oy, where the unit of length is the centimeter, consider the points A (1;-2), B(2;1), C(5;0) and the line (d) with equation y = 3x - 5.

- 1) a. Verify that (d) is passing through A and B.
 - **b.** Plot the points A, B, C and draw (d).
- 2) a. Determine the equation of the line (BC).
 - **b.** Calculate the lengths AB and BC.
 - **c.** Prove that ABC is a right isosceles triangle with vertex B.
- 3) Let (G) be the circle circumscribed about the triangle ABC and D is the point defined by $\overrightarrow{BD} = \overrightarrow{AC}$.
 - a. Calculate the coordinates of D.
 - **b.** Prove that (DB) is tangent to (G).
- 4) (d') is the translate of (d) under the translation with vector \overrightarrow{AC} . Find the equation of (d').

VI- (5 points)

Consider a semicircle (C) with centre O and radius R . [AB] is the diameter of (C) and D is a point on (C) so that BD = R.

Let M be the midpoint of [OA]. The perpendicular bisector of [OA] intersects [AD] at E, (BD) at F and (C) at K.

- 1) Reproduce and complete the figure.
- **2)** Calculate the angles of the triangle ABD, then calculate AD in terms of R.
- **a.** Prove that the two triangles ADB and FMB are similar.
 - **b.** Calculate BF in terms of R.
- 4) (BE) intersects (AF) at J. Show that J is on (C).
- 5) Prove that the points B, M, J and F are on the same circle whose center and radius should be determined.
- **6) a.** Show that the triangle OKA is equilateral.
 - **b.** Prove that (OK) passes through the midpoint of [AF].

الاسم: الرقم: مسابقة في مادة الرياضيات المدة ساعتان مشروع معيار التصحيح

	Part of the Q	Answer	Mark
	1	(2)(-0.5) = -1, therefore (b)	0.5
	2	$30\ 000\ -27\ 600\ =2400\ =\frac{30\ 000\times x}{100}$; $x=8\ (8\ \%)$, therefore (c)	0.5
I (2nts)	3	$\frac{3}{\sin 40^0}$ therefore (a)	0.5
(3pts)	4	0;1;2 therefore (c)	0.5
	5	ABM is equilateral, then BC=12 and AC= $\frac{12\sqrt{3}}{2}$ = $6\sqrt{3}$. therefore (c)	0.5
	6	DEAB is a parallelogram, $\overrightarrow{DB} + \overrightarrow{DE} = \overrightarrow{DA}$ therefore (c)	0.5
	Part of the	Answer	Mark
II (2pts)	Q	A=12	0.75
(2pts)	2		0.75
		$B=\frac{4}{3}$	
	3	C =0.3	0.75
	Part		
	of the	Answer	Mark
	Q		
III (2pts)		$\frac{x+10+8+13+y}{5}$ = 12; so, x + y + 31 = 60	
	1	Thus, $x + y = 29$	1.25
		The system is $\begin{cases} y = x + 7 \\ x + y = 29 \end{cases}$	
1	2	x = 11, so $y = 18$.	0.75

	Part of the Q	Answer	Mark
	1	A(x) = (2x - 3)(2x + 3)	0.5
	2.a	B(x) = (2x - 3)(x + 2).	0.5
***	2.b	$B(x) = 0$ $x = -2$ or $x = \frac{3}{2}$	0.5
IV (3pts)	3. a	F(x) is defined $x \neq -2$ and $x \neq \frac{3}{2}$	0.25
	3.b	$F(x) = \frac{2x+3}{x+2}$ $F(x) = 3$; $x = -3$.	0.75
	3.c	$F(\sqrt{5}) = \frac{2\sqrt{5} + 3}{2 + \sqrt{5}} = 4 - \sqrt{5}.$	0.5

	1. a	A and B are two points of (d)	0.5
V (5pts)	1. b		
	2. a	$(BC): y = -\frac{1}{3}x + \frac{5}{3}$	0.75
	2. b	$AB = \sqrt{10}$; $BC = \sqrt{10}$	0.75
	2. c	$AB = \sqrt{10}$; $BC = \sqrt{10}$ and (AB) is perpendicular to (BC) then ABC is a right isosceles triangle at B.	0.5
	3.a	$\overrightarrow{AC}(4;2);D(x;y);\overrightarrow{BD}(x-2;y-1)$ thenD(6;3)	0.5
	3.b	(BD) is perpendicular to (IB)	0.75
	4	(d'): $y = 3x - 15$	0.5

2 ADB = 90°, ABD = 60°, BAD = 30°: AD = R√3. 3.a The two triangles are right, and angle B is common 3.b BF=3R 4 (BE) is the third altitude in the triangle AFB, then ABJ is a right triangle at J, then J belongs to the circle 5 FJB = FMB = 90°B,M,J and F are on the same circle.with center rmidpoint of [BF], radius= 3R/2 6.a AKO is an equilateral triangle since KA=KO=OA=R. 6.b (OK) parallel to (BF),O rmidpoint of [AB], (OK) passes through the midpoint of [AF].	VI (5pts)	1	Figure F	0.5
3.b BF=3R 4 (BE) is the third altitude in the triangle AFB, then ABJ is a right triangle at J, then J belongs to the circle 5 FJB = FMB = 90°B,M,J and F are on the same circle.with center rmidpoint of [BF], radius=\frac{3R}{2} 6.a AKO is an equilateral triangle since KA=KO=OA=R. 6.b (OK) parallel to (BF),O rmidpoint of [AB], (OK) passes through the 0.5		2	$ADB = 90^{\circ}, ABD = 60^{\circ}, BAD = 30^{\circ} : AD = R\sqrt{3}.$	1
4 (BE) is the third altitude in the triangle AFB, then ABJ is a right triangle at J, then J belongs to the circle 5 FJB = FMB = 90°B,M,J and F are on the same circle.with center rmidpoint of [BF], radius= $\frac{3R}{2}$ 6.a AKO is an equilateral triangle since KA=KO=OA=R. 6.b (OK) parallel to (BF),O rmidpoint of [AB], (OK) passes through the 0.5		3.a	The two triangles are right, and angle B is common	0.5
triangle at J, then J belongs to the circle 5 FJB = FMB = 90°B,M,J and F are on the same circle.with center rmidpoint of [BF], radius= \frac{3R}{2} 6.a AKO is an equilateral triangle since KA=KO=OA=R. 6.b (OK) parallel to (BF),O rmidpoint of [AB], (OK) passes through the 0.75		3.b	BF=3R	0.5
rmidpoint of [BF], radius= $\frac{3R}{2}$ 6.a AKO is an equilateral triangle since KA=KO=OA=R. 6.b (OK) parallel to (BF),O rmidpoint of [AB], (OK) passes through the 0.75		4		0.5
6.b (OK) parallel to (BF),O rmidpoint of [AB], (OK) passes through the 0.75		5		0.75
		6.a	AKO is an equilateral triangle since KA=KO=OA=R.	0.5
		6.b		0.75