الاثنين ١٧ آب ٢٠١٥		المصاف المصافية المصافية المحافة فرع: علوم الحياة	وراره التربية والتحقيم التحالي المديرية العامة للتربية دائرة الامتحانات
	الاسم: الرقم:	مسابقة في مادة الكيمياء المدة: ساعتان	

امتحاتات الشهادة الثاتورة العامة

مذارة التربية والتعاره العلا

Cette épreuve est constituée de trois exercices. Elle comporte quatre pages numérotées de 1 à 4. L'usage d'une calculatrice non programmable est autorisé.

Traiter les trois exercices suivants:

Premier exercice (7 points) Réactions acido-basiques

L'étiquette d'un flacon contenant une solution commerciale d'acide bromhydrique comporte, entre autres, les indications suivantes :

46 % en masse de HBr; masse volumique: 1,47 g.mL⁻¹.

Dans cet exercice, on va faire une étude acido-basique d'une solution aqueuse diluée d'acide bromhydrique.

Données :

ده، مراداه ۱۰ مر الاستثنائية

- $M (HBr) = 81 \text{ g.mol}^{-1}$.
- $pKa (NH_4^+/NH_3) = 9,2.$

1- Dilution de la solution commerciale

- 1.1- Montrer que la concentration molaire de la solution commerciale est $C_0 = 8,35 \text{ mol.L}^{-1}$.
- 1.2- Décrire le mode opératoire à suivre, pour préparer 1 L d'une solution (S) en diluant 200 fois la solution commerciale.
- 1.3- Le pH de la solution (S) est égal à 1,38.
 - 1.3.1- Montrer que HBr est un acide fort.
 - 1.3.2- Écrire l'équation de sa réaction avec l'eau.

2- Dosage d'une solution aqueuse d'ammoniac

On ajoute, d'une façon progressive, la solution (S) dans un bécher contenant un volume $V_b = 10,0 \text{ mL}$ d'une solution d'ammoniac (NH₃) de concentration C_b en présence d'un indicateur coloré convenable.

Le volume d'acide ajouté à l'équivalence est $Va_E = 12 \text{ mL}$.

- 2.1- Écrire l'équation de la réaction de dosage.
- 2.2- Justifier, à partir des espèces chimiques présentes à l'équivalence, le caractère acide de ce milieu.
- 2.3- Montrer que la concentration de la solution d'ammoniac est $C_b = 5.0 \times 10^{-2} \text{ mol.L}^{-1}$.
- 2.4- Calculer le volume d'ammoniac gazeux nécessaire à la préparation de 1 L de la solution d'ammoniac de concentration C_b , sachant que le volume molaire gazeux est $V_m = 24 L \cdot \text{mol}^{-1}$.

3- Préparation d'une solution tampon

Déterminer le volume V_1 de la solution (S) qu'il faut ajouter à un volume $V_2 = 50$ mL de la solution d'ammoniac, de concentration C_b , pour préparer une solution tampon de pH = 9,0.

Deuxième exercice (6 points) Synthèse d'un ester

On dispose de deux flacons : l'un contient l'acide éthanoïque glacial (pur) et l'autre contient un liquide d'un composé organique pur à chaine carbonée saturée et non cyclique qu'on note (A). Cet exercice aborde l'identification du composé (A) puis sa réaction avec l'acide éthanoïque.

1- Identification de la famille de (A)

Pour identifier la famille chimique du composé A, on réalise les expériences citées ci-dessous.

Nº de l'expérience	Expérience	Résultat de l'expérience
1	(A) + métal sodium	Dégagement de gaz dihydrogène.
	Chauffage d'un mélange de :	Formation d'un composé organique
2	(A) + chlorure de thionyle SOCl ₂	(B) accompagnée de dégagement de
		deux gaz.

De plus, une étude du composé (B) montre que la molécule de (B) ne contient que de carbone, d'hydrogène et de chlore.

- 1.1- Interpréter le résultat de l'expérience 1.
- 1.2- Déduire de l'expérience 2 les familles chimiques possibles du composé (B).
- 1.3- Montrer que le composé (A) est un alcool de formule générale $C_xH_{2x+2}O$.

2- Réaction d'estérification

On chauffe un mélange de 0,5 mol d'acide éthanoïque et de 0,5 mol du composé A. On obtient, à l'équilibre, une quantité de 0,3 mol d'un ester E de formule moléculaire $C_6H_{12}O_2$.

Donnée:

La constante d'équilibre K, associée à l'équation :

 $RCOOH_{(1)} + R'OH_{(1)} \rightleftarrows RCOOR'_{(1)} + H_2O_{(1)}$

est égale à 4,12 si l'alcool est primaire et à 2,25 si l'alcool est secondaire.

- 2.1- Déterminer la formule brute de l'alcool (A).
- 2.2- Ecrire les formules semi-développées possibles de l'ester (E).
- 2.3- Montrer que la constante de l'équilibre réalisé ci-haut est égale à 2,25.
- 2.4- Identifier l'alcool (A) et nommer l'ester (E).

2.5- Représenter, d'après Cram, les deux énantiomères de l'alcool (A).

Troisième exercice (7 points) Oxydation des ions iodure

On prépare une solution (S) en mélangeant un volume de 100 mL d'une solution d'iodure de potassium $(K^+ + \Gamma)$ de concentration $C_1 = 0.80 \text{ mol.L}^{-1}$ avec un volume de 100 mL d'une solution de peroxodisulfate de sodium $(2 \text{ Na}^+ + \text{S}_2\text{O}_8^{2-})$ de concentration $\text{C}_2 = 0,20 \text{ mol.L}^{-1}$.

On observe une coloration brune qui s'intensifie avec le temps traduisant une réaction totale dont l'équation est :

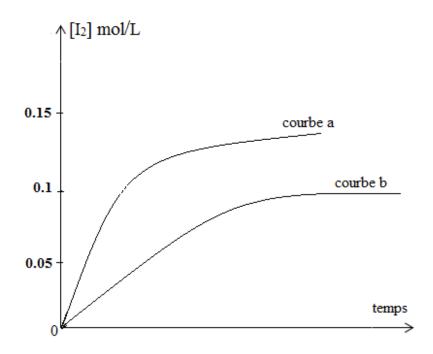
$$S_2O_8^{\,2-} \ + \ 2\ I^- \quad \rightarrow \quad 2\ SO_4^{\,2-} \ + \ I_2$$

À des dates différentes, on prélève un volume précis de la solution (S) et on dose le diiode formé, en présence d'empois d'amidon, à l'aide d'une solution de thiosulfate de sodium (2 $Na^+ + S_2O_3^{2-}$) selon l'équation:

$$I_2 + 2 S_2 O_3^{2-} \rightarrow 2 I^- + S_4 O_6^{2-}$$

1- Préparation de la solution de thiosulfate de sodium

La solution de thiosulfate de sodium, utilisée pour doser le diiode, a été préparée en dissolvant une masse m = 25,0 g de la poudre hydratée (Na₂S₂O₃, 5 H₂O) dans l'eau distillée de telle façon à avoir une solution de volume V = 500.0 mL.


- 1.1- Citer le matériel indispensable pour réaliser cette préparation.
- 1.2- Calculer la concentration molaire C de cette solution.

2- Dosage de diiode

- 2.1- Proposer, en justifiant, un moyen expérimental pour arrêter la formation de diiode dans chaque volume prélevé avant de réaliser le dosage.
- 2.2- Préciser la variation de la couleur à l'équivalence.

3- Étude cinétique

3.1- On donne, ci-après, les allures de deux courbes a et b. Choisir celle qui correspond à la variation de la concentration de diiode, dans la solution (S), en fonction du temps: $[I_2] = f(t)$. Justifier.

- 3.2- L'étude expérimentale montre que cette réaction se termine à t = 70 min.
 - 3.2.1- Définir le temps de demi-réaction
 - 3.2.2- Choisir, en justifiant, parmi les trois propositions suivantes, celle qui convient au temps de demi-réaction :

$$t_{1/2} = 35 \text{ min}$$
 ; $t_{1/2} > 35 \text{ min}$; $t_{1/2} < 35 \text{ min.}$

3.3- On note Δt l'intervalle de temps qui représente la fin de la réaction dans les mélanges réactionnels considérés dans le tableau ci-dessous.

Mélange réactionnel	Température du mélange	Δt
Mélange (1) : un volume V de la solution (S)	$40^{\circ}\mathrm{C}$	Δt_1
Mélange (2) : un volume V de la solution (S) + quelques mL d'une solution d'ions Fe ²⁺ (sans variation notable du volume)	20°C	Δt_2

Vérifier si l'on pourrait comparer Δt_1 et Δt_2 .