	عدد المسائل: أربع
المدة: ساعتان الرقم:	

ملاحظة : يُسمح باستعمال آلة حاسبة غير قابلة للبرمجة أو اختزان المعلومات أو رسم البيانات. يستطيع المُرشّح الاجابة بالترتيب الذي يناسبه (دون الالتزام بترتيب المسائل الوارد في المسابقة).

I- (4 points)

An insurance company offers its employees a special fee for an annual life insurance policy. The following table represents this offer:

Age of the employee in years	25	26	27	28	29
Rank x _i	0	1	2	3	4
Annual fee y _i in hundred thousand LL	2	2.5	3.25	3.75	4

- 1) a- Calculate x and y, the respective means (averages) of the two variables x and y.
 - b- Write an equation of (D), the regression line of y in terms of x.
- 2) Draw, in a rectangular system, the scatter plot of the points associated to the distribution $(x_i; y_i)$ as well as the center of gravity G and the line (D).

(Unit on the x-axis = 2 cm, unit on the y-axis = 4 cm.).

- 3) Assume that the above pattern remains valid till the age of 35. Estimate the annual fee for an employee whose age is 31 years.
- 4) What is the percentage of increase in the insurance annual fee between a 25 year old employee and a 31 year old employee?

II- (4 points)

The employees of a school are distributed into three categories: Instructors, administrators and technicians.

- 80% of the employees are instructors of which 70% are women.
- 10% of the employees are administrators of which 80% are women.
- 65% of the employees are women.

One employee is randomly selected from the school. Consider the following events:

- I: « The employee selected is an instructor »
- A: « The employee selected is an administrator »
- T: « The employee selected is a technician »
- M: « The employee selected is a man »
- W: « The employee selected is a woman ».
- 1) Calculate the probability P(M).
- 2) Calculate $P(I \cap W)$; $P(A \cap W)$ and verify that P(W / T) = 0.1.
- 3) Knowing that the selected employee is a man, what is the probability that he is an instructor?
- 4) In this part, suppose that the number of employees in this school is 200. The names of these employees are written on cards and these cards are placed in a box.

Three cards are randomly and simultaneously selected from this box.

What is the probability of the event B: « None of the three cards holds the name of a technician, at least one card holds the name of an administrator and at least one card holds the name of an instructor»?

III- (4 points)

At the end of July 2015, a retiree deposits an amount of 220 million LL in a bank at an annual interest rate of 6% compounded monthly. At the end of each month and after the compounding of interest, this person decides to withdraw 2 million LL for his expenses.

Denote by the natural number n the rank of the month after the deposit and by U_n the amount, in millions LL, that this person has in his account in the nth month after the withdrawal of the 2 million LL.

Thus $U_0 = 220$.

- 1) Verify that $U_1 = 219.1$ and calculate U_2 .
- 2) For all natural numbers n, show that $U_{n+1} = 1.005U_n 2$.
- 3) For all natural numbers n, let $V_n = U_n 400$.
 - a- Prove that (V_n) is a geometric sequence. Specify its ratio and first term.
 - b- Show that $U_n = -180 \times (1.005)^n + 400$.
 - c- Prove that the sequence (U_n) is decreasing.
 - d- In how many years would the amount in the bank account become less than half the original amount for the first time?

IV- (8 points)

Part A

Consider the function f defined over $[0; +\infty[$ as $f(x) = -x^2e^{-x} + 3$ and denote by (C) its representative curve in an orthonormal system $(0; \vec{i}, \vec{j})$.

- 1) Determine $\lim_{x\to +\infty} f(x)$. Deduce an asymptote (d) to (C).
- 2) Show that $f'(x) = x(x-2)e^{-x}$ and set up the table of variations of the function f.
- 3) Draw (d) and (C).
- 4) Let F be the function defined over $[0; +\infty[$ as $F(x) = (x^2 + 2x + 2)e^{-x} + 3x$.
 - a- Prove that F is an antidervative of the function f.
 - b- Deduce the area of the region bounded by the curve (C), the x-axis, the y-axis and the line with equation x = 2.

Part B

A factory produces paint. All the production is sold. The average cost of production in hundreds of thousands LL is given as $f(x) = -x^2e^{-x} + 3$, where x is expressed in hundreds of liters. $x \in [0.2; 9]$.

- 1) Determine, in LL, the average cost for the production of 600 liters of paint.
- 2) a- How many liters of paint should the factory produce so that the average cost of production is minimal? What is then the average cost in LL?
 - b- If the sale price of 100 liters of paint is 230 000 LL, does the factory make profit? Explain.
- 3) a- Express the total cost $C_T(x)$ in terms of x.
 - b- How many liters of paint should the factory produce so that the average cost of production is equal to the marginal cost?

مشروع معيار التصحيح مشروع معيار التصحيح الرياضيات المدة: ساعتان

I- (7 points)

Q Q	Correction	Grade
1-a	$\overline{x} = 2$; $\overline{y} = 3.1$	1
1-b	(D): $y = 0.525x + 2.05$	1
2	G(2,3,1) $ \begin{array}{cccccccccccccccccccccccccccccccccc$	2
3	age of $31 \rightarrow x = 6$ then $y = 0.525(6) + 2.05 = 5.2$ therefore 520 000 LL	1.5
4	$\frac{5.2-2}{2}$ = 1.6 then 160% is the increasing percentage	1.5

II₋ (7 noints)

<u> </u>	7 points)	
Q	Correction	Grade
1	P(M) = 1 - P(W) = 1 - 0.65 = 0.35	1
2	$P(I \cap W) = P\left(\frac{W}{I}\right) \times P(I) = 0.7 \times 0.8 = 0.56;$ $P(A \cap W) = P\left(\frac{W}{A}\right) \times P(A) = 0.8 \times 0.1 = 0.08;$ $P(W \cap T) = P(W) - P(W \cap I) - P(W \cap A) = 0.65 - 0.56 - 0.08 = 0.01$ $P\left(\frac{W}{T}\right) = \frac{P(W \cap T)}{P(T)} = \frac{0.01}{0.1} = 0.1.$	3
3	$P(I/M) = \frac{P(I \cap M)}{P(M)} = \frac{0.8 \times 0.3}{0.35} = 0.68.$	1.5
4	$P(B) = \frac{C_{160}^2 \times C_{20}^1 + C_{160}^1 \times C_{20}^2}{C_{200}^3} = \dots = \frac{1424}{6567} \square 0.216.$	1.5

III- (7 points)

Q	Correction	Grade
1	$U_1 = \left(1 + \frac{0.06}{12}\right) \times 200 = 219,1 \text{ et } U_2 = \left(1 + \frac{0.06}{12}\right) \times 219.1 = 218.1955.$	1
2	$U_{n+1} = \left(1 + \frac{0.06}{12}\right) \times U_n - 2 = 1.005 U_n - 2$	1
3-a	$V_{n+1} = U_{n+1} - 400 = 1.005 U_n - 402 = 1.005 (U_n - 400) = 1.005 V_n$ $q = 1.005$ and $V_0 = U_0 - 400 = 220 - 400 = -180$	1.5
3-b	$V_n = V_0 \times q^n = -180 \times (1.005)^n$ and $U_n = V_n + 400 = -180 \times (1.005)^n + 400$	1
3-с	$U_{n+1} - U_n = -180 \times (1.005)^{n+1} + 400 + 180 \times (1.005)^n - 400$ $= -180 \times (1.005)^n (1.005 - 1) = -0.9 \times (1.005)^n < 0$	1
3-d	$ U_n < \frac{U_0}{2} \; ; \; -180 \times \left(1.005\right)^n + 400 < 110 \; ; \; \left(1.005\right)^n > \frac{29}{18} \; ; \; n > \frac{\ln\left(29/18\right)}{\ln(1.005)} \; ; $ $ n > 95.6 \; \; ; \; \; n = 96 \; \text{then after 8 years.} $	1.5

IV- (14 points)

17-()	(14 points)		
Q	Correction		
A-1	$\lim_{x \to +\infty} f(x) = 3 \text{ then (d)} : y = 3 \text{ is a horizontal asymptote at } +\infty$		
A-2	$f'(x) = x(x-2)e^{-x}$ $\frac{x \mid 0 \qquad 2}{f'(x) \mid 0 \qquad 0}$	+∞ + 3	1.5
A-2	same sign as $x - 2$ then: $ \frac{f(x)}{3 - \frac{4}{e^2}} $	1/2	
A-3	(d) (C) (C)		1.5
A-4-a	$F'(x) = (2x+2)e^{-x} - e^{-x}(x^2 + 2x + 2) + 3 = f(x)$		
A-4-b	f_2 f_1 f_2 f_3 f_4 f_5 f_4 f_5		1.5
B-1	$f(6) = -36e^{-6} + 3 = 2.910765$ the average cost is: 2 910 765 LL.		1.5
B-2-a	According to the table of variations the average cost production is minimal for $x=2$ then 200 liters. The minimal average cost is $f(2)=2.45866$ then 245 866 LL		1.5
B-2-b	y = 2,3 < f(2) (The minimum of f) then no gain.		1.5
B-3-a	$C_{T}(x) = x f(x) = -x^{3}e^{-x} + 3x.$		1
D 2 h	$C_{m}(x) = (x^{3} - 3x^{2})e^{-x} + 3 ; C_{M}(x) = C_{m}(x) ; (x^{3} - 3x^{2})e^{-x} + 3 = -x^{2}e^{-x} + 3 ;$ $x^{3} - 3x^{2} = -x^{2} ; x^{2}(x - 2) = 0 ; x = 0 \text{ or } x = 2$ but $0 \notin [0.2; 9]$ then $x = 2$ therefore for a production of 200 liters.		
B-3-b			