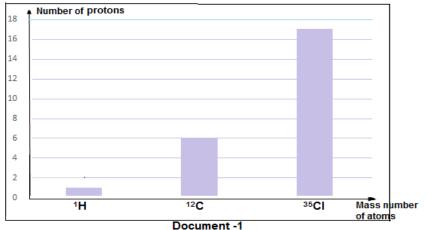
المادة: الكيمياء الشهادة: المتوسطة نموذج: رقم -٣-المدة: ساعة واحدة

لهيئة الأكاديمية المشتركة قسم: العلوم


نموذج مسابقة (يراعي تعليق الدروس والتوصيف المعدّل للعام الدراسي 2016-2017 حتى صدور المناهج المطوّرة)

This exam is composed of three exercises. It is inscribed on two pages. The use of non-programmable calculator is allowed. Answer the two following questions.

Exercise I (7 points)

Polyvinyl Chloride (PVC)

Polyvinyl chloride, known as PVC, is one of the most used plastics in the world. This polymer is widely used for pipes.

Hydrogen
Carbon
Chlorine

Document - 2

Atoms

Number of neutrons

Electron configuration

Η

C

Cl

1- **Document-1** shows the atomic composition of vinyl chloride molecule.

1- Document-1 shows the atomic composition of vinyi chio

- 1.1 Recopy and complete the adjacent table:
- 1.2 Write the Lewis dot symbol for carbon atom.
- 1.3 For the following statements, choose the right answer. Justify.
 - 1.3.1 Knowing that the relative charge of an electron = 1-, the relative charge of the electron cloud of carbon atom is:

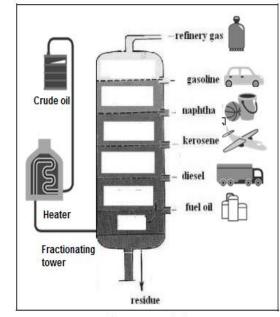
	_
1	6
1	-()

1.3.2 The valence of carbon atom is:

- 2- **Document-2** shows the molecular model of vinyl chloride compound.
- 2.1 Write the structural formula of vinyl chloride.
- 2.2 Give the molecular formula of this compound.
- 2.3 Specify the type of the bond between the two carbon atoms.
- **3-** The polyvinyl chloride (PVC) of chemical formula $\overline{\text{-(CH}_2\text{-CHCl)}_n}$ is made from vinyl chloride monomer through polymerization reaction.
 - 3.1 Give the condensed structural formula of the repeating unit.
 - 3.2 Write, using the condensed structural formula, the equation of the polymerization reaction of vinyl chloride.

Exercise 2 (7 points)

Crude oil Refining


Crude oil is treated in the refinery and it is separated into various hydrocarbons fractions.

- 1- Referring to **document -1**, answer the following questions:
- 1.1 Give the name of the separation technique used to separate the crude oil into different fractions.

- 1.2 Indicate the substance that will condense at the highest point in the column and the one that condenses at the lowest point.
- 2- Specify whether the following statements are true or false:
- 2.1 The boiling points of propane C_3H_8 and pentane C_5H_{12} are respectively $36^{\circ}C$ and $42^{\circ}C$.
- 2.2 Knowing that the boiling temperature of heptane is 98°C, then its physical state is liquid at ambient temperature (25°C).
- 3- Propane (C_3H_8) burns completely when it combines with oxygen gas in air. Write the balanced equation for the complete combustion of propane.
- 4- The cracking of heptane (C_7H_{16}) produces ethene and a hydrocarbon (A) of formula C_xH_y according to the following equation:

$$C_7H_{16} \longrightarrow C_2H_4 + C_xH_v$$

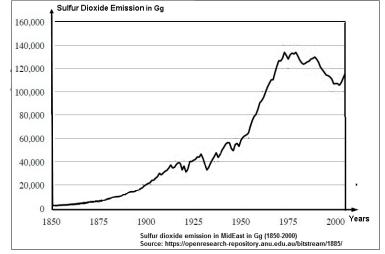
- 4.1. Show that the molecular formula of compound (A) is C_5H_{12} .
- 4.2. Write the possible condensed structural formulas of compound (A) and give the name of each.
- 4.3 Specify the nature of the relationship that exists between the different possible structures of compound (A).

Document-1

Exercise 3 (6 points)

Sulfur Dioxide Pollution

Sulfur dioxide (SO_2) is emitted mainly by the combustion of sulfur-containing fossil fuels (coal, oil, gas oil) and by certain industrial processes. This gas is irritating, especially to the respiratory system. Furthermore, SO_2 turns into sulfuric acid which contributes to the acid rain. The harmful effects produced by acid rain are: the impoverishment of the natural environment as well as the deterioration of the buildings.


Document-1 shows the variation of the amounts of SO₂ in Gegagram (Gg) between the years 1850 and 2000.

1- Pick out from the passage:

- 1.1 A harmful effect that can be caused by acid rain.
- 1.2 The major source of sulfur dioxide production.
- 1.3 A harmful effect of sulfur dioxide on human health.

2- Referring to document-1:

- 2.1. Give the value of the amount of sulfur dioxide released into the air in the year 1975 and that released in the year 2000.
- 2.2 Specify how the air pollution by sulfur dioxide (SO₂) evolves during this period.

Document-1

3- Sulfur burns with oxygen gas of the air according to the following equation:

$$S_{(s)} + O_{2(g)} \longrightarrow SO_{2(g)}$$

- 3.1 Calculate the oxidation number of S in SO₂.
- 3.2 Show that the above reaction is an oxidation-reduction reaction.
- 3.3 Specify the oxidizing species.

المادة: الكيمياء الشهادة: المتوسطة نموذج: رقم -٣-المدّة: ساعة واحدة

الهيئة الأكاديميّة المشتركة قسم: العلوم

أسس التصحيح (تراعي تعليق الدروس والتوصيف المعدّل للعام الدراسي 2016-2017 وحتى صدور المناهج المطوّرة)

	F	Exercise 1 (7 poi Polyvinyl Chloride			
Part of questions	Expected answers				Mark
1.1	Atoms	Н	С	Cl	3/4
	Number of neutrons	A-Z=1-1=0	12-6=6	35-17=18	3/
	Electron configuration	K^1	K^2L^4	$K^2L^8M^7$	3/4
	The values of A and Z are de	erived from docume	nt-1.		1/2
	Where the number of neutr	ons N=Mass numb	er (A) - numbe	er of protons and the	/2
	number of protons =number of electrons in an atom.				
1.2	Carbon atom: • C •			1/2	
1.3.1	i -6				1/4
	The relative electric charge	of carbon atom =	relative charge	of one electron x its	
	number of electrons.				1/2
	the number of electrons $=$ nu	•	in carbon atom	therefore the electric	
	charge of carbon atom= 6x(l-)= -6			
1.3.2	ii. valence = 4	C'	(172 4)	1 . 1 1	1/ ₄ 1/ ₂
	Referring to the electron configuration of carbon atom (K ² L ⁴), carbon atom belongs to column 14 then it has 4 unpaired electrons in its outermost shell.				
2.1	The structural formula of vir	nyl chloride compou	ınd:		
	H_	∠H			1/2
	`	C = C			
	H-/	CI			
2.2	The molecular formula of vinyl chloride compound is C ₂ H ₃ Cl.				1/2
2.3	The type of bond between two carbon atoms in this molecule is double covalent			1/4	
	bond since these atoms shared two pairs of electrons.				1/4
3.1	The condensed structural for	mula of the repeate	d unit is:		1/2
	-CH ₂ -CH-				
3.2	The polymerization equation	ı ic:			1
5.4					1
	$n (CH_2 = CH) \longrightarrow (CH_2 = CH)$	I ₂ -CH) n			
	C1	Cl			

	Exercise 2 (7 points)	
	Crude oil Refining	
Part of	Expected answers	Mark
questions		
1.1	Fractional distillation used to separate the crude oil into different fractions.	1/2
1.2	The refinery gas is the first separated constituent and the residue is the last one.	1/2
2.1	False, the boiling point of straight chain alkane increases as the number of carbon (n) increases. Therefore the boiling point of propane $(n = 3)$ and pentane $(n = 5)$ are respectively -42°C and 36°C.	1
2.2	True; at boiling point 98°C, heptane (n = 7) changes from the liquid state to the gaseous state. At an ambient temperature of 25°C < 98°C, heptane is in the liquid state.	1
3	The complete combustion of propane is: $C_3H_8 + 5O_2 \rightarrow 3CO_2 + 4H_2O$	1/2
4.1	The cracking equation of heptane is : $C_7H_{16} \rightarrow C_2H_4 + C_xH_y$ According to the law of conservation, the number of atoms of each element in the reaction is conserved: The number of carbon of compound (A) is $x = 7 - 2 = 5$ and its number of hydrogen $y = 16 - 4 = 12$.	1
	So, the molecular formula of (A) is C_5H_{12} .	1/4
4.2	CH ₃ -CH ₂ -CH ₂ -CH ₃ Pentane (or n-pentane). CH ₃ CH ₃ CH ₃ -CH ₂ -CH-CH ₃ 2-methylbutane CH ₃ CH ₃ CH ₃ -C-CH ₃ CH ₃ CH ₃ CH ₃	3x(½)
	· · · · · · · · · · · · · · · · · · ·	
<i>E</i>	2,2- dimethylpropane These compounds having the same malegular formula and different	3/.
5	These compounds having the same molecular formula and different structural formulas are called isomers	3/4

	Exercise 3 (6 points)	
	Sulfur Dioxide Pollution	
Part of	Part of Expected answers	
questions		
1.1	To choose one of the harmful effects caused by acid rain:	1/2
	- The impoverishment of the natural environment. or	
	- The deterioration of the buildings.	
1.2	The major source of sulfur dioxide production is (coal, oil, gas oil)	1/2
1.3	This gas is irritating to the respiratory system.	1/2
2.1	The amount of sulfur dioxide, released into the air on 1975 is:130,000 Gg	1/2
	The amount of sulfur dioxide, released into the air on 2000 is: 105,000 Gg.	1/2
2.2	The quantity of sulfur dioxide released decreases from 1975 to 2000, so,	1
	the air pollution caused by the release of SO ₂ decreased during that period.	
3.1	Let x be the o.n of S in SO_2 therefore x-4 = 0	1/2
	Therefore the o.n of sulfur in SO ₂ is +IV	
3.2	O.n: 0 0 +IV -II	
	$S_{(s)} + O_{2(g)} \longrightarrow SO_{2(g)}$	
	The oxidation number of sulfur increases from 0 in (S) to $+$ IV in SO ₂ . It's	1 1/2
	an oxidation. On the other hand, the oxidation number of oxygen decreases	
	from 0 in O_2 to -II in SO_2 . It's a reduction.	
	Since there is a change in oxidation number: Then this reaction is redox.	
3.3	The oxidizing agent is O ₂ since its oxidation number decreases.	1/2