وزارة التربية والتعليم العالي المديرية العامة للتربية دائدة الامتحانات

N1	مسابقة في مادة الرياضيات	
الاسم: الرقم:	المدّة: ساعتان	عدد المسائل: أربع

ملاحظة: يسمح باستعمال آلة حاسبة غير قابلة للبرمجة أو اختزان المعلومات أو رسم البيانات. يستطيع المرشح الإجابة بالترتيب الذي يناسبه (دون الالتزام بترتيب المسائل الوارد في المسابقة)

I - (**3** points)

In the complex plane referred to a direct orthonormal system (O; u, v), consider the points E, M and M' of respective affixes i, z and z', where z' = i z + 1 + i.

- 1) Find the algebraic form of z' when $z = \sqrt{2}e^{i\frac{\pi}{4}}$.
- 2) Determine the modulus and an argument of z if $z' = 1 + \sqrt{3} + 2i$.
- 3) Determine the value of z, for which the points M and M' are confounded.
- 4) a- Show that z' i = i (z i).
 - b- Deduce that when M moves on the circle (C) of center E and radius 3, then the point M' moves on the same circle.

II - (4 points)

In the space referred to a direct orthonormal system (O; \vec{i} , \vec{j} , \vec{k}), consider:

- the plane (P) of equation 2x + y 3z 1 = 0;
- the plane (Q) of equation x + 4y + 2z + 1 = 0;
- the line (d) defined by : $\begin{cases} x = 2t + 1 \\ y = -t 1 \\ z = t \end{cases}$ (t is a real parameter).
- 1) Prove that the line (d) is included in the plane (P).
- 2) Find an equation of the plane (S) that is determined by the point O and the line (d).
- 3) Consider the point $E\left(0; -\frac{1}{2}; -\frac{1}{2}\right)$.

Prove that E is the orthogonal projection of the point O on the line (d).

- 4) a- Show that the planes (P) and (Q) are perpendicular.
 - b- Let (D) be the line of intersection of (P) and (Q). Calculate the distance from E to (D).

III - (5 points)

A certain store sells only jackets, coats and shirts.

During a week, 120 customers were served in this store.

90 of those customers bought each one jacket, while the other 30 customers bought each one coat.

40% of those who bought jackets bought each also a shirt, while **20%** of those who bought coats bought each also a shirt.

A customer is chosen at random from those 120 customers and is interviewed.

- 1) Consider the following events:
 - J: « the interviewed customer has bought a jacket ».
 - C: « the interviewed customer has bought a coat ».
 - S: « the interviewed customer has bought a shirt ».
 - a- Verify that the probability of the event $S \cap J$ is equal to $\frac{3}{10}$.
 - b- Calculate the following probabilities:

$$P(S \cap C)$$
, $P(S)$, $P(C/S)$ and $P(C/\overline{S})$.

2) The prices of the clothes in this store are as shown in the following table:

Kind	Jacket	Coat	Shirt	
Price in LL	150 000	200 000	60 000	

Let X designate the random variable that is equal to the amount paid by a customer.

- a- Give the four possible values of X.
- b- Determine the probability distribution of X.
- c- Calculate the mean (expected value) E(X).
- d- Estimate the amount of sales collected by the store during that week.

IV- (8 points)

Consider the function f that is defined, on I =] 1; + ∞ [, by f(x) = x + 1 - $\frac{3e^x}{e^x - e}$

and let (C) be its representative curve in an orthonormal system (O; i, j).

- 1) a- Prove that the line of equation x = 1 is an asymptote to (C).
 - b- Calculate $\lim_{x \to +\infty} f(x)$ and show that the line (d) of equation y = x 2 is

an asymptote to (C).

- c- Determine the relative position of (C) and (d).
- 2) Prove that f'(x) > 0 for all values of x in I, and set up the table of variations of f.
- 3) Prove that the equation f(x) = 0 has a unique root α and verify that $2.6 < \alpha < 2.7$.
- 4) Draw the curve (C).
- 5) Designate by (D) the region that is bounded by (C), the line (d) and the lines of equations x = 3 and x = 4.

Calculate $\int_{3}^{4} \frac{e^{x}}{e^{x} - e} dx$ and deduce the area of the region (D).

- 6) a- Prove that f, on the interval I, has an inverse function g.
 - b- Prove that the equation f(x) = g(x) has no roots.

L.S.		\mathcal{MATH} 1 st session 2005	
Question		Short Answers	M
I	1	$z' = i(\sqrt{2} e^{i\frac{\pi}{4}}) + 1 + i = i(1+i) + (1+i) = 2i$.	1/2
	2	$ 1 + \sqrt{3} + 2i = iz + 1 + i; iz = \sqrt{3} + i ; z = 1 - i\sqrt{3} ;$ $ z = 2 \text{ and } \arg(z) = -\frac{\pi}{3}$	1/2
	3	$z' = z$ for $z = iz + 1 + i$; $z(1 - i) = 1 + i$; $z = \frac{1 + i}{1 - i}$; $z = i$.	1/2
	4a	z' - i = iz + 1 = i(z - i)	1/2
	4b	$ z'-i = i z-i = z-i \ ;\ EM'=EM.$ M moves on the circle (C) , EM = 3 , then EM' = 3, thus M' moves on the same circle.	1

	Every point $M(2t+1; -t-1; t)$ on (d) is a point in (P) because $2(2t+1)-t-1-3t-1=0$; $0t=0$, hence (d) is included in (P).		
II	2		1
	3	E is a point on (d) (for $t = -\frac{1}{2}$). $\overrightarrow{OE} \cdot \overrightarrow{V_d} = 0 + \frac{1}{2} - \frac{1}{2} = 0$. $\blacktriangleright OR$: Find the coordinates of the orthogonal projection of O on (d).	1
	4a	$ \begin{array}{c} \rightarrow & \rightarrow \\ n_P(2;1;-3) \text{ and } n_Q(1;4;2); \\ \rightarrow & \rightarrow \\ n_P \cdot n_Q = 0; (P) \text{ and } (Q) \text{ are perpendicular.} \end{array} $	1/2
	4b	(P) and (Q) are perpendicular, E is a point in (P); $d(E/(D)) = d(E/(Q)) = \frac{ 0-2-1+1 }{\sqrt{1+16+4}} = \frac{2}{\sqrt{21}}$	1

Question		Short Answers		
III		$ \begin{array}{c c} \hline 3/4 & J & \hline 6/10 & \overline{S} \\ \hline 1/4 & C & \hline 8/10 & \overline{S} \end{array} $		
	1a	$P(S \cap J) = P(J) \times P(S/J) = \frac{3}{4} \times \frac{4}{10} = \frac{3}{10}.$	1/2	
	1b	$\begin{split} P(S \cap J) &= P(J) \times P(S/J) = \frac{3}{4} \times \frac{4}{10} = \frac{3}{10} . \\ P(S \cap C) &= P(C) \times P(S/C) = \frac{1}{4} \times \frac{2}{10} = \frac{1}{20} . \\ P(S) &= P(S \cap J) + P(S \cap C) = \frac{6}{20} + \frac{1}{20} = \frac{7}{20} . \\ P(C/S) &= \frac{P(C \cap S)}{P(S)} = \frac{1/20}{7/20} = \frac{1}{7} . \\ P(C/S) &= \frac{P(C \cap S)}{P(S)} = \frac{P(C) \times P(S/C)}{1 - P(S)} = \frac{(1/4)(8/10)}{1 - (7/20)} = \frac{4}{13} . \\ A \text{ customer has bought only one out of the following four choices : only a jacket, only a coat, a jacket and a shirt, a coat and a shirt. } \\ X(\Omega) &= \{ 150 000, 200 000, 210 000, 260 000 \} \end{split}$	1½	
	2b	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1 1/2	
	2c	$E(X) = \frac{10000}{40}(15 \times 18 + 20 \times 8 + 21 \times 12 + 26 \times 2) = 183500$		
	2d	The sales amount during that week is equal to the product of the mean amount by the number of the customers : $183\ 500 \times 120 = 22\ 020\ 000\ LL$.	1/2	

Question		Short Answers	M
	1a	$\lim_{\substack{x \to 1 \\ x > 1}} e^x = e \; ; \; \lim_{\substack{x \to 1 \\ x > 1}} (e^x - e) = 0^+ \; ; \; \lim_{\substack{x \to 1 \\ x > 1}} f(x) = -\infty$ The line of equation $x = 1$ is an asymptote to (C).	1/2
	1b	$\lim_{x \to +\infty} \frac{3e^x}{e^x - e} = 3 \text{ , consequently } \lim_{x \to +\infty} f(x) = +\infty ;$ $\lim_{x \to +\infty} [f(x) - (x - 2)] = \lim_{x \to +\infty} [3 - \frac{3e^x}{e^x - e}] = 0$ The line (d) of equation $y = x - 2$ is an asymptote to(C).	1
	1c	$f(x) - (x - 2) = 3 - \frac{3e^{x}}{e^{x} - e} = \frac{-3e}{e^{x} - e}$ $x > 1$, $e^{x} > e$, then $f(x) - (x - 2) < 0$ so (C) is below (d).	1/2
	2	$f'(x) = 1 - 3 \frac{e^{x}(e^{x} - e) - e^{x}(e^{x})}{(e^{x} - e)^{2}} = 1 + 3 \frac{e^{x+1}}{(e^{x} - e)^{2}} > 0$ $\frac{x}{f'(x)} + \infty$ $f(x) = 1 - 3 \frac{e^{x}(e^{x} - e) - e^{x}(e^{x})}{(e^{x} - e)^{2}} = 1 + 3 \frac{e^{x+1}}{(e^{x} - e)^{2}} > 0$	1
	3	On I, f is continuos and changes signs, thus the equation $f(x) = 0$ has at least one root α . But since f is strictly increasing on I, then α is unique. $f(2.6) = -0.158$ and $f(2.7) = 0.0294$, thus $2.6 < \alpha < 2.7$	1
IV	4	$ \begin{array}{c c} x \\ \hline 0 \\ 1 \\ 2 \end{array} $	1
	5	• $\int_{3}^{4} \frac{e^{x}}{e^{x} - e} dx = \left[\ln(e^{x} - e) \right]_{3}^{4} = \ln(e^{4} - e) - \ln(e^{3} - e) = \ln \frac{e^{3} - 1}{e^{2} - 1}.$ • $\mathcal{H} = \int_{3}^{4} (x - 2 - f(x)) dx = \int_{3}^{4} (-3 + 3 \frac{e^{x}}{e^{x} - e}) dx = \left[-3x \right]_{3}^{4} + 3\ln \frac{e^{3} - 1}{e^{2} - 1}$ $= \left[-3 + 3\ln \frac{e^{3} - 1}{e^{2} - 1} \right] u^{2} \approx 0.28 u^{2}$	1 1/2
	6a	On I, f being continuous and strictly increasing, it has an inverse function g.	1/2
	6b	The equation $f(x) = g(x)$ is equivalent to $f(x) = x$, so $1 - \frac{3e^x}{e^x - e} = 0$ gives $2e^x = -e$ which is impossible. OR: graphically, the curve (C) does not cut the first bisector $y = x$.	1