دورة سنة ٢٠٠٦ الاستثنائية

امتحانات شهادة الثانوية العامة فرع العلوم العامة

وزارة التربية والتعليم العالي المديرية العامة للتربية دائرة الامتحانات

عدد المسائل: ست مسابقة في مادة الرياضيات الاسم: المدة: أربع ساعات الرقم:

ملاحظة: : يسمح باستعمال آلة حاسبة غير قابلة للبرمجة او اختزان المعلومات او رسم البيانات. يستطيع المرشح الإجابة بالترتيب الذي يناسبه (دون الالتزام بترتيب المسائل الوارد في المسابقة)

I - (1.5 points)

In the table below, only one of the proposed answers to each question, is correct. Write down the number of each question and give, **with justification**, the answer corresponding to it.

		Answers				
Nº	Questions	a	b	c	d	
1	$z = -2e^{-i\frac{5\pi}{6}}.$ An argument of z is:	$\frac{-\pi}{6}$	$\frac{\pi}{6}$	$\frac{7\pi}{6}$	$\frac{5\pi}{6}$	
2	The solution set of the inequality $ln(x^2 - 2x+2) > 0$ is:	IR]0;+∞[IR - {1 }]1;+∞[
3	$\lim_{x \to +\infty} x \ln\left(1 + \frac{1}{x}\right) =$	1	-1	+∞	-8	
4	z and z ' are two complex numbers. If $z' = \frac{\overline{z} - i}{z + i}$, then $ z' =$	z	2	$ z \times \overline{z} $	1	

II-(2.5 points)

In the space referred to a direct orthonormal system (O; \vec{i} , \vec{j} , \vec{k}), consider the points A(1;-1;1), B(2;0;3), C(-1;1;1) and G(4;2;4) and designate by (P) the plane that is determined by A, B and C.

- 1) a- Calculate the area of triangle ABC.b- Calculate the volume of the tetrahedron GABC and deduce the distance from G to plane (P).
- 2) Prove that x + y z + 1 = 0 is an equation of plane (P).
- 3) a- Show that the point F(2;0;6) is symmetric of G with respect to plane (P).
 - b- Give a system of parametric equations of the line (d) that is the symmetric of the line (AF) with respect to plane (P).
 - c- Prove that the line (AB) is a bisector of the angle FAG.

III-(3 points)

Consider, in an oriented plane, the two direct squares ABCD and BEFC. Let S be the direct plane similitude that transforms A onto E and E onto F.

- 1) a- Determine the ratio k and an angle α of S.
 - b- Construct geometrically the center W of S.
 - c- Find the point G that is the image of F under S.
- 2) Let h be the transformation that is defined by $h = S \circ S$.
 - a- Determine the nature and the elements of h.
 - b- Specify h(A), and express WA in terms of WF.
- 3) The complex plane is referred to an orthonormal system (A; AB, AD).
 - a- Determine the affixes of the points E, F and W.
 - b- Find the complex form of S.
 - c- Give the complex form of h and find the affix of h(E).

IV- (3 points)

Given two identical boxes B_1 and B_2 .

The box B_1 contains **four** red balls and **two** white balls, and the box B_2 contains **four** red balls, **three** white balls and **one** black ball.

- **A-** The two boxes B_1 and B_2 are placed inside the same bag. **One** box is drawn randomly from this bag, after which three balls are then drawn, randomly and simultaneously, from this box.
- 1) Consider the following events:

E: « the drawn balls are three red balls from the box B_1 ».

F: « the three drawn balls are red ».

a- Show that the probability of E is equal to $\frac{1}{10}$.

b- Calculate the probability of 87F.

2) a- What is the probability of obtaining the black ball among the three drawn balls?

b- What is the probability of drawing three balls having three different colours?

B- All the balls in the boxes B_1 and B_2 are now emptied in an urn U.

Three balls are drawn, simultaneously and randomly, from the urn U.

Let X be the random variable that is equal to the number of white balls among the drawn balls.

- 1) Determine the probability distribution of X.
- 2) Calculate the mean (expected value) E(X).

V-(2.5 points)

Consider, in the plane referred to an orthonormal system (O; i, j), the hyperbola (H) of equation $x^2 - 3y^2 = 3$.

- 1) a- Determine the coordinates of the vertices and of the foci of (H) and find its eccentricity.
 - b- Write the equations of the asymptotes and of the directrices of (H).
 - c- Draw the hyperbola (H).
- 2) Let (D) be the region bounded by the hyperbola (H) and the line of equation x = 2. Calculate the volume generated by the rotation of (D) about the axis of abscissas.
- 3) Designate by K and L the points on (H) having the same abscissa 2. Show that the tangents to (H) at K and L intersect on a directrix of (H).

VI- (7.5 points)

- A Consider the differential equation (E): $y' + 2y = 6xe^{-2x}$.
 - Let $z = y 3x^2 e^{-2x}$.
 - 1) Write a differential equation (E') satisfied by z, and solve (E').
 - 2) Deduce the general solution of (E), and find a particular solution y of (E) that verifies y(0) = 0.
- B- Let f be the function that is defined, on IR, by $f(x) = 3x^2e^{-2x}$, and let (C) be its representative curve in an orthonormal system (O; i, j).
- 1) a- Calculate $\lim_{x \to +\infty} f(x)$ and deduce an asymptote of (C).
 - b- Calculate $\lim_{x\to -\infty} f(x)$ and $\lim_{x\to -\infty} \frac{f(x)}{x}$.
- 2) a- Calculate f'(x) and set up the table of variations of f.
 - b- Prove that the curve (C) has two points of inflection.
- 3) a- Draw the curve (C).
 - b- Determine, according to the values of the real number m, the number of roots of the equation: $me^{2x} 3x^2 = 0$.
- 4) Let F be the function that is defined, on IR, by $F(x) = (ax^2 + bx + c)e^{-2x}$.
 - a- Determine a, b and c for which F is a primitive of f.
 - b- Calculate the area of the region that is bounded by the curve (C), the axis of abscissas and the lines of equations x = -1 and x = 0.
- 5) The tangent to (C) at the point A(1; 3e⁻²) cuts again the curve (C) at a point E of abscissa t.
 - a-Verify that -0.3 < t < -0.2.
 - b-Let h be the function that is defined, on IR, by $h(x) = -e^{x-1}$. Prove that h(t) = t.
- 6) Let g be the function that is defined by $g(x) = e^{f(x)}$.
 - a- Set up the table of variations of g.
 - b- Find the number of solutions of the equation g(x) = e.
 - c- Solve the inequality g(x) > 1.

	GENERAL SCIENCES – MATHEMATICS ; 2 nd SESSION – 2006		
I			
1	$z = -2e^{-i\frac{5\pi}{6}} = 2e^{i(\frac{-5\pi}{6} + \pi)} = 2e^{i\frac{\pi}{6}}.$	b	
2	$\ln(x^2 - 2x + 2) > 0$; $x^2 - 2x + 2 > 1$; $(x - 1)^2 > 0$; $x \ne 1$.	c	2
3	$\lim_{x \to +\infty} x \ln(1 + \frac{1}{x}) = \lim_{t \to 0} \frac{\ln(1+t)}{t} = 1 , \text{where } t = \frac{1}{x}.$	a	3
4	$ z' = \frac{ \overline{z} - i }{ z + i } = \frac{ \overline{z} + i }{ z + i } = 1$.	d	

II		
1.a	$S = \frac{\ \overrightarrow{AB} \wedge \overrightarrow{AC}\ }{2} ; \overrightarrow{AB} \wedge \overrightarrow{AC} = -4 \overrightarrow{i} - 4 \overrightarrow{j} + 4 \overrightarrow{k} ; S = 2\sqrt{3} u^{2}.$	1/2
1.b	$V = \frac{ \overrightarrow{AG}.(\overrightarrow{AB} \wedge \overrightarrow{AC}) }{6} = \frac{ -12 }{6} = 2 u^3; \qquad V = \frac{d \times S}{3} \text{ ,thus } d = \frac{3V}{S} = \frac{6}{2\sqrt{3}} = \sqrt{3} u.$	1
2	\rightarrow \rightarrow \rightarrow AM.(AB \(\lambda\)AC) = 0; -4(x-1)-4(y+1)+4(z-1)=0; x+y-z+1=0. \Rightarrow OR: The coordinates of A, B and C verify the equation of (P).	1/2
3.a	FG(2; 2; -2); $N_P(1; 1; -1)$; FG = 2 N_P , so (FG) \perp (P). I: midpoint of [FG]; I(3; 1; 5); $3+1-5+1=0$ thus I belongs to (P). \Rightarrow OR: prove that (P) is the mediator plane of [FG].	1
3.b	(d) is the line (AG): $x = 3m + 1$; $y = 3m - 1$ and $z = 3m + 1$.	1
3.c	(AI) is a bisector of FÂG since $AF = AG$ and I is the midpoint of [FG], \rightarrow \rightarrow \rightarrow \rightarrow moreover, $AI(2;2;4)$ and $AB(1;1;2)$ hence $AI = 2$ AB ,thus B belongs to (AI).	1

III		
1.a	$S(A) = E ; S(E) = F. \qquad k = \frac{EF}{AE} = \frac{1}{2} ; (\overrightarrow{AE}, \overrightarrow{EF}) = \frac{\pi}{2} (2\pi), \alpha = \frac{\pi}{2}.$	1/2
1.b	Since $\alpha = (WA, WE) = \frac{\pi}{2}$ then W belongs to circle of diameter [AE];	1/2
1.0	Also since (WE, WF) = $\frac{\pi}{2}$ then W belongs to circle of diameter [EF];	1/2
	Thus W is the point of intersection of the 2 circles, other than E ($S(E) = F \neq E$).	
1.c	$S(E) = F$ and $S(F) = G$ so $(EF, FG) = \frac{\pi}{2}$ and G belongs to the semi st. line [FD);	1/2
1.0	and since $\frac{FG}{EF} = \frac{1}{2}$ then G is the midpoint of [FC].	1,2
2.a	h is a direct plane similitude of center W , of ratio $\frac{1}{4}$ and of angle π , thus it becomes the	1
	negative homothecy of center W and of ratio $-\frac{1}{4}$.	1

2.b	$S(A) = E$ and $S(E) = F$ then $h(A) = S(S(A)) = S(E) = F$, so $WF = -\frac{1}{4}WA$.	1/2
3.a	$z_E = 2$; $z_F = 2 + i$; $\overrightarrow{WF} = -\frac{1}{4} \overrightarrow{WA}$; $z_F - z_W = -\frac{1}{4} (z_A - z_W)$; $z_W = \frac{8}{5} + \frac{4}{5}i$.	1
3.b	$z' - z_{W} = \frac{1}{2}e^{i\frac{\pi}{2}}(z - z_{W}); z' - \frac{8}{5} - \frac{4}{5}i = \frac{1}{2}i(z - \frac{8}{5} - \frac{4}{5}i); z' = \frac{1}{2}iz + 2.$	1
	$\begin{aligned} z' - z_W &= -\frac{1}{4} (z - z_W) \; ; \; z' = = -\frac{1}{4} z + 2 + i. \\ \text{For } z &= 2 \; ; \; z' = -\frac{1}{2} + 2 + i = \frac{3}{2} + i. \end{aligned}$	1

IV		
A1.a	$P(E) = \frac{1}{2} \times \frac{C_4^3}{C_6^3} = \frac{1}{2} \times \frac{4}{20} = \frac{1}{10}.$	1/2
A1.b	$P(F) = P(3R \text{ from } B_1) + P(3R \text{ from } B_2) = \frac{1}{10} + \frac{1}{2} \times \frac{C_4^3}{C_8^3} = \frac{1}{10} + \frac{1}{2} \times \frac{4}{56} = \frac{19}{140}.$	1
A2.a	Obtaining the black ball among the chosen 3 balls means that B_2 is chosen ,so 1 black and 2 non black are chosen from B_2 ; $p_1 = \frac{1}{2} \times \frac{C_1^1 \times C_7^2}{C_8^3} = \frac{1}{2} \times \frac{21}{56} = \frac{3}{16}$.	1
A2.b	Obtaining 3 balls having different colors means that B_2 is chosen from which one ball of each color is chosen; $p_2 = \frac{1}{2} \times \frac{C_1^1 \times C_4^1 \times C_3^1}{C_8^3} = \frac{12}{2 \times 56} = \frac{3}{28} .$	1
В	The possible values of X are 0; 1; 2 and 3.	2

V		
1.a	$x^2 - 3y^2 = 3$. $\frac{x^2}{3} - y^2 = 1$. $a^2 = 3$ so A($\sqrt{3}$; 0) and A($-\sqrt{3}$; 0) are the vertices. $c^2 = a^2 + b^2 = 4$ then the foci are F(2; 0) and F'(-2 ; 0), and $e = \frac{c}{a} = \frac{2\sqrt{3}}{3}$.	1 1/2
1.b	The asymptotes of (H) have equations : $y = \frac{1}{\sqrt{3}}x$ and $y = \frac{-1}{\sqrt{3}}x$. Directrices : $x = \frac{a^2}{c} = \frac{3}{2}$; $x = -\frac{a^2}{c} = -\frac{3}{2}$.	1

		1/2
2	$V = \pi \int_{\sqrt{3}}^{2} y^{2} dx = \pi \int_{\sqrt{3}}^{2} (\frac{x^{2}}{3} - 1) dx = \pi \left[\frac{x^{3}}{3} - x \right]_{\sqrt{3}}^{2} = \frac{6\sqrt{3} - 10}{9} u^{3}.$	1
3	For $x=2$, $y^2=\frac{1}{3}$ and $y=\frac{1}{\sqrt{3}}$ or $y=-\frac{1}{\sqrt{3}}$, so $K(2;\frac{1}{\sqrt{3}})$ and $L(2;-\frac{1}{\sqrt{3}})$. Equation of tangent at $K:y=f'(x_K)(x-x_K)+f(x_K);2x-6yy'=0;y'=\frac{x}{3y}$. $y=\frac{2}{\sqrt{3}}(x-2)+\frac{1}{\sqrt{3}}=\frac{2}{\sqrt{3}}x-\sqrt{3}\;.$ By symmetry, the equation of the tangent at L is $y=-\frac{2}{\sqrt{3}}x+\sqrt{3}$. The two asymptotes intersect at a point of abscissa $x=\frac{3}{2}$	1

VI		
A1	$y = z + 3x^2e^{-2x}$; $y' = z' + 3(2xe^{-2x} - 2x^2e^{-2x})$; $z' + 2z = 0$ (E'); $z = Ce^{-2x}$.	1 1/2
A2	$y = z + 3x^2e^{-2x}$; $y' = z' + 3(2xe^{-2x} - 2x^2e^{-2x})$; $z' + 2z = 0$ (E'); $z = Ce^{-2x}$. $y = Ce^{-2x} + 3x^2e^{-2x}$; $y(0) = 0$ gives $C = 0$ and $y = 3x^2e^{-2x}$.	1
B1a	$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \frac{3x^2}{e^{2x}} = 3 \lim_{x \to +\infty} \left(\frac{x}{e^x}\right)^2 = 0; \text{ the axis of abscissas is an asymptote to}$ (C) at $(+\infty)$.	1
B1b	$\lim_{x \to -\infty} f(x) = +\infty; \lim_{x \to -\infty} \frac{f(x)}{x} = \lim_{x \to -\infty} 3xe^{-2x} = -\infty.$ (C) has a vertical asymptotic direction (parallel to axis of ordinates).	1
B2a	f'(x) = $6x(1-x) e^{-2x}$. $\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1

	$f''(x) = 6e^{-2x} (2x^2 - 4x + 1).$	
B2b	f" (x) vanishes twice, changing signs, at the points of abscissas $\frac{2-\sqrt{2}}{2}$ and $\frac{2+\sqrt{2}}{2}$, thus	1
	(C) has 2 points of inflection.	
B3a	y x	1 1/2
	$me^{2x} = 3x^2$; $m = 3x^2e^{-2x}$.	
B3b	For $m < 0$ no roots . For $m = 0$ a double root. For $0 < m < 3e^{-2}$; three roots For $m = 3e^{-2}$ a simple root and a double root. For $m > 3e^{-2}$ one root.	
B4a	$F'(x) = f(x) \text{ gives :} (2ax + b)e^{-2x} - 2e^{-2x}(ax^2 + bx + c) = 3x^2e^{-2x}; -2a = 3; 2a - 2b = 0 \text{ and } b - 2c = 0 a = -3/2; b = -3/2 \text{ and } c = -3/4; F(x) = -\frac{3}{2}(x^2 + x + \frac{1}{2})e^{-2x}.$	1
B4b	$A = \left[-\frac{3}{2}(x^2 + x + \frac{1}{2})e^{-2x} \right]_{-1}^{0} = \frac{3}{4}(e^2 - 1) u^2.$	1
B5a	$3e^{-2} = 0.406$; $f(-0.3) = 0.4919 > 0.406$ and $f(-0.2) = 0.179 < 0.406$ thus $-0.3 < t < -0.2$. \Rightarrow OR: $f(-0.3) - 3e^{-2} = 0.0859 > 0$ and $f(-0.2) - 3e^{-2} = -0.227 < 0$.	1
B5b	$\mathbf{a}_{t^2} = \mathbf{a}_{t^2} = a$	
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1
B6b	$g(x) = e$; $e^{f(x)} = e$; $f(x) = 1$; but (C) cuts the line of equation $y = 1$ in a single point thus the equation $g(x) = e$ has a unique solution.	1/2
В6с	$g(x) > 1$; $f(x) > 0$ then $x \ne 0$. \Rightarrow OR: Use the table of variations of g.	1/2