امتحانات الشهادة الثانوية العامة الفرع: علوم الحياة

وزارة التربية والتعليم العالي المديرية العامة للتربية دائرة الامتحانات

عدد المسائل: أربع مسابقة في مادة الرياضيات الاسم: المدة: ساعتان الرقم:

المدة: ساعتان الرقم: المقادل: البرقم: المدة: ساعتان الرقم: ملاحظة : يسمح بإستعمال آلة حاسبة غير قابلة للبرمجة او اختزان المعلومات او رسم البيانات يستطيع المرشح الإجابة بالترتيب الذي يناسبه (دون الالتزام بترتيب المسائل الوارد في المسابقة)

I- (4 points)

In the plane referred to a direct orthonormal system $(O; \vec{u}, \vec{v})$, consider the points

A, M and M' of affixes i, z and z' respectively, where $z' = \frac{iz}{z-i}$ ($z \neq i$).

1- Determine the points M such that z' = z.

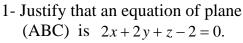
2- If $z = \frac{\sqrt{2}}{2} e^{i\frac{3\pi}{4}}$, find an argument of z'.

3- Let z = x + iy and z' = x' + iy' where x, y, x' and y' are real numbers.

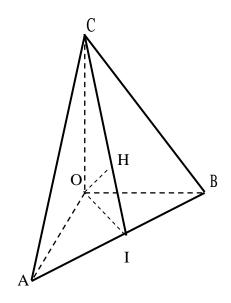
a) Calculate x' and y' in terms of x and y.

b) Determine the set of points M for which z' is real.

4- a) Show that $z' - i = \frac{-1}{z - i}$.


b) Show that when M moves on the circle (ω) of center A and radius 1 then M' moves on the same circle.

II- (4 points)


The adjacent figure is considered in a direct orthonormal system $\left(0;\stackrel{\rightarrow}{i},\stackrel{\rightarrow}{j},\stackrel{\rightarrow}{k}\right)$ where:

$$\overrightarrow{OA} = \overrightarrow{i}$$
, $\overrightarrow{OB} = \overrightarrow{j}$ and $\overrightarrow{OC} = 2 \overrightarrow{k}$.

Let I be the midpoint of [AB].

- 2- Consider the point $H\left(\frac{4}{9}; \frac{4}{9}; \frac{2}{9}\right)$.
 - a) Show that C, H and I are collinear.
 - b) Prove that (OH) is perpendicular to the plane (ABC).
 - c) Prove that the two planes (OIC) and (ABC) are perpendicular.
- 3- a) Write a system of parametric equations of the straight line (Δ) passing through C and parallel to (OB).
 - b) Let \overline{F} be a variable point on (Δ) . Prove that the tetrahedron FOAB has a constant volume to be calculated.

III- (4 points)

In a public library, every visitor has to either choose a book or use a computer. 70% of these visitors use the computer.

Out of those who use the computer, 45% do a research.

Out of the visitors who choose a book, 80% do a research.

A) We meet, at random, one of the visitors in this library.

Consider the following events:

C: « the visitor uses the computer».

B: « the visitor chooses a book».

R: « the visitor does a research».

- 1- Verify that the probability $P(C \cap R)$ is equal to 0.315.
- 2- Calculate $P(B \cap R)$ then P(R).
- 3- The visitor did a research, calculate the probability that he used the computer.
- **B**) On a Monday morning, 30 persons visited this library. We choose, simultaneously and at random, three of these visitors. Designate by X the random variable that is equal to the number of visitors who used the computer among the three chosen visitors.
 - 1- Determine the values of X.
 - 2- Determine the probability distribution of X.

IV- (8 points)

Let f be the function that is defined, on $[0; +\infty[$, by $f(x) = (x+1)e^{-x}$ and designate by (C) its representative curve in an orthonormal system (O; i, j). (unit: 2cm)

- 1- Calculate $\lim_{x \to +\infty} f(x)$ and deduce an asymptote of (C).
- 2- a) Calculate f'(x) and set up the table of variations of f.
 - b) Calculate f '(0) and interpret the result graphically.
- 3- a) Prove that the curve (C) has a point of inflection $W(1, \frac{2}{e})$.
 - b) Write an equation of the line (d) that is tangent to (C) at the point W.
- 4- Draw (d) and (C).
- 5- a) Calculate the real numbers a and b so that the function F defined on $[0;+\infty[$ by $F(x) = (ax + b)e^{-x}$ is an antiderivative of f.
 - b) Calculate, in cm^2 , the area of the region bounded by (C), the axis of abscissas and the two lines of equations x = 0 and x = 1.
- 6- Let g be the inverse function of f and designate by (G) the representative curve of g.
 - a) Draw (G) in the preceding system.
 - b) Find an equation of the tangent to the curve (G) at the point of abscissa $\frac{2}{e}$.

مسابقة في مادة الرياضيات

معيار التصحيح

I- (4 points)

Part of the Q	Answer	Mark
1	$z = \frac{iz}{z - i}$ then $z(z-2i) = 0$; $z = 0$ or $z = 2i$, so M(0;0) or M(0;2).	0.5
2	$z = \frac{\sqrt{2}}{2}e^{i\frac{3\pi}{4}} = \frac{-1}{2} + \frac{i}{2}; z' = \frac{\frac{-1}{2} - \frac{i}{2}}{\frac{-1}{2} - \frac{i}{2}} = 1; \text{ arg } z' = 0(2\pi).$	0.5
3.a	$z' = \frac{-x}{x^2 + (y-1)^2} + i\frac{x^2 + y^2 - y}{x^2 + (y-1)^2}; x' = \frac{-x}{x^2 + (y-1)^2}; y' = \frac{x^2 + y^2 - y}{x^2 + (y-1)^2}.$	0.5
3.b	z' is real then $x^2 + y^2 - y = 0$; then $x^2 + (y - \frac{1}{2})^2 = \frac{1}{4}$ and $z \ne i$, so the set is a circle of center $(0, 1/2)$ and radius $1/2$ excluding point A(0;1).	1
4.a	$z' = \frac{iz}{z-i}$ then $z'-i = \frac{iz}{z-i} - i$ thus $z'-i = \frac{-1}{z-i}$.	0.5
4.b	Since AM = 1 then $ z-i =1$ then $ z'-i =\left \frac{-1}{z-i}\right =\frac{\left -1\right }{1}=1$, so AM' = 1 then M' moves on the same circle (ω) .	1

II- (4 points)

Part of the Q	Answer	Mark
1	The coordinates of A, B and C verify the given equation since: $2x_A + 2y_A + z_A - 2 = 2 + 0 + 0 - 2 = 0$. Also, $2x_B + 2y_B + z_B - 2 = 0 + 2 + 0 - 2 = 0$; and $2x_C + 2y_C + z_C - 2 = 0$.	0.5
2.a	$\vec{CH}\left(\frac{4}{9}; \frac{4}{9}; -\frac{16}{9}\right); \vec{CI}\left(\frac{1}{2}; \frac{1}{2}; -2\right); \text{ so, } \vec{CH} = \frac{8}{9} \vec{CI}, \text{ hence } C, H \text{ and I are collinear.}$	0.5
2.b	$\vec{n}(2;2;1)$ is a normal vector to plane (ABC), but $\vec{OH}\left(\frac{4}{9};\frac{4}{9};\frac{2}{9}\right) = \frac{2}{9}\vec{n}$, so \vec{OH} is perpendicular to plane (ABC).	0.5

2.c	(OH) is perpendicular to plane (ABC) and (OH) \subset (OCI) so the plane (OCI) is perpendicular to plane (ABC).	1
3.a	$\overrightarrow{OB}(0;1;0)$ is a direction vector of (Δ) , and C is a point of (Δ) . consequently, (Δ) : $\begin{cases} x = 0 \\ y = t \\ z = 2 \end{cases}$	0.5
3.b	(Δ) // (OAB), so the distance from F to (OAB) is constant hence the volume is constant. area of triangle OAB = $\frac{OA \times OB}{2} = 0.5u^2$ and d(F;OAB) = OC = 2 Consequently V = $\frac{0.5 \times 2}{3} = \frac{1}{3}u^3$. \blacktriangleright OR: calculate \overrightarrow{OF} . $(\overrightarrow{OA} \wedge \overrightarrow{OB}) = 2$ (independent of t), and V = $ \overrightarrow{OF} \cdot (\overrightarrow{OA} \wedge \overrightarrow{OB}) = \frac{1}{3}u^3$	1

III- (4 points)

111- (4 points)		
Part of the Q	Answer	Mark
A. 1	$P(C \cap R) = P(C).P(R/C) = (0.7)(0.45) = 0.315$	0.5
A. 2	$P(B \cap R) = P(B).P(R/B) = (0.3)(0.8) = 0.24$ $P(R) = P(C \cap R) + P(B \cap R) = 0.315 + 0.24 = 0.555$	1
A. 3	$P(C/R) = \frac{P(C \cap R)}{P(R)} = 0.567$	0.5
B.1	The values of X are : 0; 1; 2; and 3	0.5
B.2	If the total number is 30, then there are 21 who use the computer. $P(X = 0) = \frac{C_9^3}{C_{30}^3} = \frac{3}{145} \qquad ; \qquad P(X = 1) = \frac{C_{21}^1 C_9^2}{C_{30}^3} = \frac{27}{145}$ $P(X = 2) = \frac{C_{21}^2 C_9^1}{C_{30}^3} = \frac{27}{58} \qquad ; \qquad P(X = 3) = \frac{C_{21}^3}{C_{30}^3} = \frac{19}{58}$	1.5

IV- (8 points)

11- (9	points)	
Part of the Q	Answer	Mark
1	$\lim_{x\to +\infty} f(x) = \lim_{x\to +\infty} \frac{x+1}{e^x} = \lim_{x\to +\infty} \frac{1}{e^x} = 0$, the axis of abscissas is an asymptote to (C).	0.5
2.a	$f'(x) = -x e^{-x}.$ $\frac{x \mid 0 \qquad +\infty}{f'(x) \mid 0 \qquad \square}$ $f(x) \mid 1 \qquad 0$	1
2.b	f'(0) = 0. Then the tangent at $A(0; 1)$ is parallel to x-axis.	1
3.a	$f''(x) = (x - 1)e^{-x}$; $f''(x)$ vanishes for $x = 1$ and changes sign; consequently (C) has a point of inflection W(1, $\frac{2}{e}$).	1
3.b	$y - \frac{2}{e} = -\frac{1}{e}(x-1)$ or $y = -\frac{1}{e}x + \frac{3}{e}$	0.5
4		1
5.a	F'(x) = f(x); $a - b - ax = x + 1$ so $a = -1$ and $b = -2$.	1
5.b	$A = \int_{0}^{1} f(x)dx = \left[(-x - 2)e^{-x} \right]_{0}^{1} = (2 - \frac{3}{e})u^{2} = 0.896 u^{2} = 0.896 \times 4 cm^{2} = 3.58cm^{2}.$	1
6.a	Graph	0.5
6.b	By symmetry of (d) w.r.t first bisector: $x = -\frac{1}{e}y + \frac{3}{e}$ or $y = -ex + 3$. OR: $g'(\frac{2}{e}) = \frac{1}{f'(1)} = -e$; an equation of tangent at point $(\frac{2}{e}; 1)$ to (G) is:	0.5
	$y-1 = -e(x-\frac{2}{e})$; $y = -ex + 3$.	