عدد المسائل: ست مسابقة في مادة الرياضيات الاسم: الرقم: الرقم:

المدة أربع ساعات الرقم: ملاحظة: يسمح بإستعمال آلة حاسبة غير قابلة للبرمجة او اختزان المعلومات او رسم البيانات يستطيع المرشح الإجابة بالترتيب الذي يناسبه (دون الالتزام بترتيب المسائل الوارد في المسابقة)

I - (2 points)

The complex plane is referred to a direct orthonormal system $(O; \overrightarrow{u}, \overrightarrow{v})$.

Let z be the nonzero complex number defined by its exponential form $z = re^{i\alpha}$, whose conjugate is denoted by \bar{z} .

Consider the points A, B and C of respective affixes $z_A = z$, $z_B = \frac{1}{z}$ and $z_C = \frac{z^2}{\overline{z}}$.

- 1- Determine the exponential form of each of the numbers z_B and z_C in terms of r and α .
- 2- Determine a measure of the angle $(\overrightarrow{OB}; \overrightarrow{OC})$ in terms of α . Deduce the values of α such that O, B and C are collinear and O belongs to [BC].
- 3- Suppose in this part that $\alpha = \frac{\pi}{4}$.
 - a) Verify that $z_B \times \overline{z}_C = -1$.
 - b) Let D be the point of affix z_D such that $z_D = -\frac{1}{\overline{z}}$.

Calculate each of the numbers $z_B - z_D$ and $z_A - z_C$ in terms of r and prove that the straight lines (BD) and (AC) are parallel.

c) Prove that ABDC is an isosceles trapezoid.

II - (3 points)

The space is referred to a direct orthonormal system (O; \vec{i} , \vec{j} , \vec{k}).

Consider the points A(-1; 2; 0), B(2; 1; 0) and C(0; 0; 3).

- 1- Calculate the area of triangle ABC.
- 2- Calculate the volume of the tetrahedron OABC. Deduce the distance from O to plane (ABC).
- 3- a) Write an equation of the plane (ABC).
 - b) Show that the point O' $\left(\frac{18}{23}; \frac{54}{23}; \frac{30}{23}\right)$ is the symmetric of O with respect to plane (ABC).
 - c) Calculate cos (OAO') as well as the cosine of the angle between the line (AO) and the plane (ABC).
- 4- Let J be the midpoint of [AB].
 - a) Verify that the plane (COJ) is the mediator plane of [AB].
 - b) Calculate the cosine of the acute angle between the two planes (COJ) and (xOz).

III – (2 points)

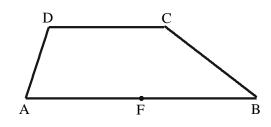
ABCD is a trapezoid of bases [AB] and [CD] such that:

[AB] is fixed and AB = 12;

[CD] is variable and CD = 6.

Let F be the mid point of [AB].

- 1- a) Prove that if the perimeter of ABCD remains equal to 28, then D moves on an ellipse (E) of foci A and F.
 - b) Draw (E).



In all what follows, the plane is referred to the orthonormal system (A; \vec{i} , \vec{j}) such that B(12; 0).

- 2- a) Prove that $\frac{(x-3)^2}{25} + \frac{y^2}{16} = 1$ is an equation of the ellipse (E).
 - b) Calculate the eccentricity of (E) and determine an equation of the directrix (d) associated to A.
- 3- Let L be one of the points of intersection of (E) with the axis of ordinates.
 - a) Determine an equation of the tangent (T) to (E) at L.
 - b) Show that (T) cuts the focal axis of (E) at a point belonging to the directrix (d).

IV - (3 points)

In order to ensure that the cars in a given city are functioning well, a certain company is inspecting all the cars in this city.

It is known that 20 % of these cars are under guarantee.

Among the cars under guarantee, the probability that a car has a defect is $\frac{1}{100}$.

Among the cars not under guarantee, the probability that a car has a defect is $\frac{1}{10}$.

- 1- Calculate the probability of each of the following events:
 - A: « The inspected car is under guarantee and has a defect ».
 - D: « The inspected car has a defect ».
- 2- Prove that the probability that an inspected car is under guarantee knowing that it has

a defect is equal to $\frac{1}{41}$.

- 3- The car inspection is for free if the car is under guarantee;
 - it costs 50 000 LL if the car is not under guarantee and does not have a defect;
 - it costs 150 000 LL if the car is not under guarantee and has a defect.

Denote by X the random variable that is equal to the cost of inspection of a car.

- a) What are the possible values of X?
- b) Determine the probability distribution of X and calculate the expected value of X.
- 4- The company inspects an average of 50 cars per day. Estimate the daily inspection cost collected by this company.

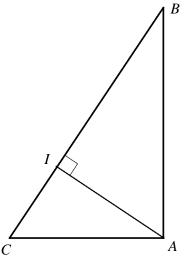
V - (3 points)

Given a triangle ABC such that AB = 6, AC = 4

and
$$(\overrightarrow{AB}; \overrightarrow{AC}) = \frac{\pi}{2} (2\pi)$$

Let I be the orthogonal projection of A on (BC).

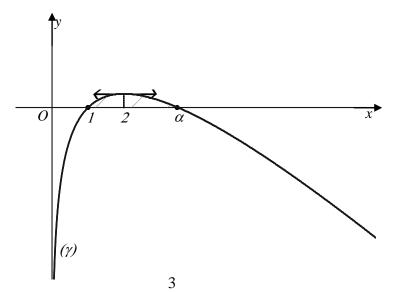
1- Let h be the dilation of center I that transforms C onto B. Construct the image (d) of the line (AC) under h. Deduce the image D of A under h.



- 2- Let S be the similitude that transforms A onto B, and C onto A.
 - a) Determine the ratio and an angle of S.
 - b) Determine the image by S of each of the two straight lines (AI) and (CB). Deduce that I is the center of S.
 - c) Determine the image of (AB) by S . Deduce that S(B) = D.
- 3- a) Determine the nature and the characteristic elements of $S \circ S$.
 - b) Prove that $S \circ S(A) = h(A)$.
 - c) Prove that $S \circ S = h$.
- 4- Let E be the mid point of [AC].
 - a) Determine the points F and G such that F = S(E) and G = S(F).
 - b) Show that the points E, I and G are collinear.

VI – (7 points)

- A- Consider the differential equation (1): $xy' y = 1 2\ln x$
- 1- Verify that $y_1 = 1 + 2 \ln x$ is a particular solution of the equation (1).
- 2- Determine the general solution Y of the differential equation xy' y = 0.
- 3- a) Verify that $Y + y_1$ is the general solution of the differential equation (I).
 - b) Determine the particular solution y of the equation (1) such that y(1) = 0.
- B- The figure below shows, in an orthonormal system, the representative curve (γ) of the function h defined on the interval $]0; +\infty[$ by $h(x) = 1 x + 2\ln x$.



- 1- a) Prove that $3.51 < \alpha < 3.52$.
 - b) Determine the maximum of h(x).
- 2- a) Using integration by parts, calculate $\int_{1}^{\alpha} \ln x \, dx$ in terms of α .
 - b) Deduce the area $S(\alpha)$ of the shaded region bounded by (γ) and the axis of abscissas.
- C- Let f be the function defined on]0; $+\infty$ [by $f(x) = \frac{1 + 2\ln x}{x^2}$.

Designate by (C) the representative curve of f in an orthonormal system $(O; \vec{i}, \vec{j})$.

- 1- a) Determine the point of intersection of (C) with the axis of abscissas.
 - b) Prove that the axes of the system are the asymptotes of (C).
- 2- a) Set up the table of variations of f and prove that $f(\alpha) = \frac{1}{\alpha}$
 - b) Draw (*C*).
- 3- a) Prove that the restriction of f on the interval $[1; +\infty[$ has an inverse function f^{-1} .
 - b) Determine the domain of definition and the domain of differentiability of f^{-1} .
 - c) Solve the inequality $f^{-1}(x) > \alpha$.
- D- Let (I_n) be the sequence defined, for $n \ge 4$, by $I_n = \int_{n}^{n+1} f(x) dx$.
 - 1-Prove that, for all x in the interval $[4; +\infty[, 0 \le f(x) \le \frac{1}{x}]$.
 - 2- Deduce that, for all natural integers $n \ge 4$, $0 \le I_n \le ln \left(\frac{n+1}{n}\right)$.
 - 3- Determine the limit of the sequence (I_n) .

مسابقة في مادة الرياضيات

معيار التصحيح

№ I- (2 points)

Part of the Q	Answer	Mark
1	$z_{B} = \frac{1}{z} = \frac{1}{r}e^{-i\alpha} ; z_{C} = \frac{z^{2}}{\overline{z}} = \frac{r^{2}e^{i2\alpha}}{re^{-i\alpha}} = re^{i3\alpha}.$ $(\overrightarrow{OB}; \overrightarrow{OC}) = (\overrightarrow{u}; \overrightarrow{OC}) - (\overrightarrow{u}; \overrightarrow{OB}) = 3\alpha - (-\alpha) = 4\alpha.$	0.5
2	$(\overrightarrow{OB};\overrightarrow{OC}) = (\overrightarrow{u};\overrightarrow{OC}) - (\overrightarrow{u};\overrightarrow{OB}) = 3\alpha - (-\alpha) = 4\alpha$. $O, B \text{ and } C \text{ are collinear and } O \in [BC] \text{ is equivalent to}$ $(\overrightarrow{OB};\overrightarrow{OC}) = \pi + 2k\pi \text{ Therefore } \alpha = \frac{\pi}{4} + k\frac{\pi}{2} \text{ where } k \in IZ$.	0.5
3a	$z_{\rm B} \times \overline{z_{\rm C}} = \frac{1}{r} e^{-i\alpha} \times r e^{-i3\alpha} = e^{-i4\alpha} = e^{-i\pi} = -1$.	0.5
3b	$z_B - z_D = \frac{1}{z} + \frac{1}{\overline{z}} = \frac{z + \overline{z}}{z \overline{z}} = \frac{2r \cos \frac{\pi}{4}}{r^2} = \frac{\sqrt{2}}{r} \; ;$ $z_A - z_C = z - \frac{z^2}{\overline{z}} = \frac{z}{\overline{z}} (\overline{z} - z) = i \left(-2ir \sin \frac{\pi}{4} \right) = \sqrt{2} \; r .$ $\frac{z_B - z_D}{z_A - z_C} = \frac{1}{r^2} (\text{ real number})$ $\frac{z_B - z_D}{z_A - z_C} \text{ being a real number, then } (BD) \text{ and } (AC) \text{ are parallel } .$ or Each of the numbers $z_B - z_D$ and $z_A - z_C$ is a real number, then each of the straight lines (BD) and (AC) is parallel to the axis of abscissas; consequently they are parallel	1.5
3c	OA = OC = r and $OB = OD = \frac{1}{r}$. $Z_D = -\frac{Z}{Z\overline{Z}} = -\frac{Z}{r^2}$. Hence, O,A and D are collinear. Therefore $ABDC$ is an isosceles trapezoid since its diagonals intersect and determine 2 isosceles triangles	1

№ II - (3 points)

Part of the Q	Answer	Mark
1	\overrightarrow{AB} (3;-1;0); \overrightarrow{AC} (1;-2;3); $\overrightarrow{AB} \wedge \overrightarrow{AC} = -3 \vec{i} - 9\vec{j} - 5\vec{k}$.	
1	The area of triangle <i>ABC</i> is $S = \frac{1}{2}\sqrt{9+81+25} = \frac{1}{2}\sqrt{115}$ units of area	0.5
	$\overrightarrow{AB} \wedge \overrightarrow{AC}(-3; -9; -5)$ and $\overrightarrow{OA}(-1; 2; 0)$; then	
	$\overrightarrow{OA} \cdot (\overrightarrow{AB} \wedge \overrightarrow{AC}) = -15$.	
2	The volume of tetrahedron \overrightarrow{OABC} is $V = \frac{1}{6} \overrightarrow{OA} \cdot (\overrightarrow{AB} \wedge \overrightarrow{AC}) = \frac{15}{6} = \frac{5}{2}$	
	units of volume. 1 $d\sqrt{115}$	1
	If d is the distance from O to plane (ABC), then $V = \frac{1}{3} d \times S = \frac{d\sqrt{115}}{6}$.	
	Therefore $d = \frac{15}{\sqrt{115}} = \frac{3\sqrt{115}}{23}$.	
3a	(ABC): 3x + 9y + 5z - 15 = 0.	1
	$\overrightarrow{u}(3;9;5)$ is a direction vector of the straight line (OO') ;	
21.	(OO'): x = 3t; y = 9t; z = 5t.	
3b	$(OO') \cap (ABC) : t = \frac{3}{23}$; hence	1
	$(OO') \cap (ABC) = \left\{ H\left(\frac{9}{23}; \frac{27}{23}; \frac{15}{23}\right) \right\}.$	-
	H being the mid point of $[OO']$; Therefore $O'\left(\frac{18}{23}; \frac{54}{23}; \frac{30}{23}\right)$.	
	$\cos (O \stackrel{\land}{A} O') = \frac{\overrightarrow{AO} \cdot \overrightarrow{AO'}}{AO \times AO'} = \frac{5}{23}.$	
3c	Let α be the angle of (AO) and (ABC) . $O \stackrel{\circ}{AO}' = 2\alpha$.	1.5
	$\cos^2 \alpha = \frac{1 + \cos 2\alpha}{2} = \frac{14}{23}$. Since α is acute, $\cos \alpha = \frac{\sqrt{322}}{23}$.	
_	$J\left(\frac{1}{2}; \frac{3}{2}; 0\right); \overrightarrow{OJ}.\overrightarrow{AB} = 0 \text{ hence } (AB) \perp (OJ) \text{ (or notice that } ABC$	
4a	is isosceles)	0.5
	Also $(AB) \perp (OC)$ since $\overrightarrow{OC} \cdot \overrightarrow{AB} = 0$ (or notice that $(AB) \subset (xOy)$ and $C \in z'z$).	0.3
	Therefore the plane (COJ) is the mediator plane of $[AB]$.	
4b	$\overrightarrow{j} \perp (xOz)$ and $\overrightarrow{AB} \perp (COJ)$; therefore $\cos \beta = \frac{ \overrightarrow{j}.\overrightarrow{AB} }{AB} = \frac{1}{\sqrt{10}}$.	0.5

№ III- (2 points)

Part of	2 points)	
the Q	Answer	Mark
1a	If $AB + CD + BC + DA = 28$ then $12 + 6 + DF + DA = 28$. Hence $DF + DA = 10 > AF$. The point D varies on the ellipse (E) of foci A and F and of length of focal axis $2a = 10$.	1
1b	(d) (T) (A) I F X	0.5
2a	$I(3;0)$ is the center of (E) ; $a = 5$ and $c = \frac{1}{2}AF = 3$. Then $b = 4$. The focal axis of (E) being $x'x$, then (E) : $\frac{(x-3)^2}{25} + \frac{y^2}{16} = 1$.	1
2b	$e = \frac{c}{a} = \frac{3}{5}$ and (d) : $x = x_1 - \frac{a^2}{c} = 3 - \frac{25}{3}$; (d) : $x = -\frac{16}{3}$.	0.5
3a	L(0; $\frac{16}{5}$). (T): $16(x_L - 3)(x - 3) + 25(y_L)y = 400$.	0.5
3b	$(T): -3(x-3)+5y=25; -3x+5y=16.$ $(T) \text{ cuts } x'x \text{ at } K(-\frac{16}{3}; 0) \text{ that belongs to the directrix } (d) \text{ of } (E).$	0.5

№ IV- (3 points)

Part of the Q	Answer	Mark
1	Let G be the event : « the car is guaranteed »	, _
	We can construct the following tree:	1.5

	$ \begin{array}{c c} 0.01 & D \\ \hline 0.99 & \overline{D} \\ \hline 0.8 & 0.1 & D \\ \hline 0.9 & \overline{D} \end{array} $	
	$A = G \cap D$, then $p(A) = p(G) \times p(D/G) = 0.2 \times 0.01 = 0.002$. $P(D) = P(G \cap D) + P(\overline{G} \cap D) = 0.002 + 0.8 \times 0.1 = 0.002 + 0.08 = 0.082$.	
2	$p(G/D) = \frac{p(G \cap D)}{p(D)} = \frac{0.002}{0.082} = \frac{2}{82} = \frac{1}{41}.$	0.5
3a	The possible values of X are: 0; 50 000 and 150 000.	0.5
3b	$\begin{split} p(X=0) &= p(G) = 0.2 . \\ p(X=50000) &= p(\overline{G} \cap \overline{D}) = P(\overline{G}) \times P(\overline{D}/\overline{G}) = 0.8 \times 0.9 = 0.72 . \\ p(X=150000) &= p(\overline{G} \cap D) = 0.1 \times 0.8 = 0.08 . \\ \hline x_i & 0 & 50000 & 150000 \\ P(X=x_i) & 0.2 & 0.72 & 0.08 \\ \hline E(X) &= \sum p_i x_i = 0 + 0.72 \times 50000 + 0.08 \times 150000 = 36000 + 12000 = 48000 LL . \end{split}$	2.5
4	The average control cost of a car is equal to 48000 LL. Therefore , if the company has controlled 50 cars , we can estimate a cost of $48000\times50=2400000$ LL.	1

№ V- (3 points)

Part of the Q	Answer	Mark
1	$(d) D \qquad G \qquad B$ $F \qquad \qquad F$ $h(C) = B .$ The image (d) of (AC) by h is the parallel to (AC) that passes through B . The image D of A by h is the point of intersection of (AI) and (d) .	1

2a	The angle of S is $\alpha = (\overrightarrow{AC}; \overrightarrow{BA}) = \frac{\pi}{2}$ [2 π]; its ratio is $k = \frac{BA}{AC} = \frac{3}{2}$	0.5
2b	$S(A) = B$ and $\alpha = \frac{\pi}{2}$, hence $S(AI)$ is the perpendicular to	
	(AI) passing through B ; $S(AI) = (BC)$.	
	Similarly, $S(CB) = (AI)$.	
	$S(AI) = (BC)$ and $I \in (AI)$ hence $S(I) \in (BC)$.	1.5
	$S(CB) = (AI)$ and $I \in (BC)$ hence $S(I) \in (AI)$.	
	Therefore $S(I) = I$ and I is the center of S .	
	$S(A) = B$ and $\alpha = \frac{\pi}{2}$, hence $S(AB)$ is the perpendicular to (AB)	
2c	passing through B; $S(AB) = (d)$.	
	$S(AB) = (d)$ and $B \in (AB)$ hence $S(B) \in (d)$;	0.5
	$B \in (BC)$, then $S(B) \in (AI)$, therefore $S(B) = (AI) \cap (d)$ and $S(B) = D$.	
3a	$S \circ S = S(I, \frac{3}{2}, \frac{\pi}{2}) \circ S(I, \frac{3}{2}, \frac{\pi}{2}) = S(I, \frac{9}{4}, \pi)$. Hence $S \circ S$ is the	0.5
	dilation $h(I, -\frac{9}{4})$	
3b	$S \circ S(A) = S(S(A)) = S(B) = D.$	0.5
3c	$S \circ S$ and h are two dilations of same center I and $S \circ S(A) = h(A) = D$	
	hence $S \circ S = h$.	0.5
	S([AC]) = [BA] and E is the mid point of $[AC]$; hence $S(E)$ is the	
4a	mid point F of $[AB]$.	0.5
	S([AB]) = [BD] and F is the mid point of $[AB]$; hence $S(F)$ is the mid	
	point G of $[BD]$.	_
4b	$G = S(F) = S \circ S(E) = h(E)$. Then E, I and G are collinear.	0.5

№ VI- (7 points)

Part of the Q	Answer	Mark
A1	$x y'_1 - y_1 = 2 - 1 - 2 \ln x = 1 - 2 \ln x$.	0.5
	y = 0 is a particular solution of the equation (2): $xy' - y = 0$;	
A2	If $y \neq 0$, $\frac{y'}{y} = \frac{1}{x}; \ln y = \ln x + k; y = ax$	1
	The general solution of (2) is $Y = ax$ where $a \in IR$.	
A3a	$Y + y_1 = 1 + ax + 2\ell n x$ depends on an arbitrary constant and satisfies the equation (1).	0.5
	Therefore $y = 1 + ax + 2\ell n x$ is the general solution of (1).	
A3b	$y(1) = 0$ iff $a = -1$; $y = 1 - x + 2\ell n x$.	0.5
	$h(3.51) \times h(3.52) \approx (0.001)(-0.003) < 0$. Hence $3.51 < \alpha < 3.52$.	1
B1a		
B1b	The maximum of $h(x)$ is $h(2) = -1 + \ell n 4$.	0.5
B2a	$\int_{1}^{\alpha} \ln x dx = \left[x \ln x \right]_{1}^{\alpha} - \int_{1}^{\alpha} dx = \left[x \ln x - x \right]_{1}^{\alpha} = \alpha \ln \alpha - \alpha + 1.$	1

B2b	$S = \int_{1}^{\alpha} h(x)dx = \left[x - \frac{1}{2}x^{2}\right]_{1}^{\alpha} + 2(\alpha \ln \alpha - \alpha + 1) = \frac{3}{2} + 2\alpha \ln \alpha - \alpha - \frac{1}{2}\alpha^{2} \text{ units of area }.$	0.5
C1a	$(\frac{1}{\sqrt{e}};0)$	0.5
C1b	$\lim_{x \to 0^{+}} f(x) = -\infty \text{ and } \lim_{x \to +\infty} f(x) = 0^{+} \text{ ; } x'x \text{ and } y'y \text{ are asymptotes to } (C) \text{ .}$	0.5
C2a	$ \frac{x}{f(x)} = -\frac{4\ell n x}{x^3} \cdot f(\alpha) = \frac{1 + 2\ell n \alpha}{\alpha^2} = \frac{h(\alpha) + \alpha}{\alpha^2} = \frac{1}{\alpha} $	1,5
C2b		1,5
C3a	f is continuous and strictly decreasing on $[1; +\infty[; f]$ admits an inverse function f^-	0.5
C3b	f^{-1} is defined on $f([1; +\infty[) =]0; 1]$. f is differentiable on $[1; +\infty[$ and the equation $f'(x) = 0$ admits a unique solution $x = 0$. Therefore f^{-1} is differentiable on $f([1; +\infty[) =]0; 1[$	1
C3c	$f^{-1}(x) > \alpha$ is equivalent to $f(f^{-1}(x)) < f(\alpha)$. Hence $x < \frac{1}{\alpha}$; i.e. $x \in]0; \frac{1}{\alpha}[$.	0.5
D1	The figure drawn in C2b shows that , for all $x \in [4; +\infty[$, $f(x) > 0$. In addition , $f(x) - \frac{1}{x} = \frac{1 + 2\ell n x - x}{x^2} = \frac{h(x)}{x^2}$; for $x \in [4; +\infty[$, $x > \alpha$ and $h(x) < 0$. Then , for all $x \in [4; +\infty[$, $0 \le f(x) \le \frac{1}{x}$.	1

D2	For all $n \ge 4$, $0 \le \int_{n}^{n+1} f(x) dx \le \int_{n}^{n+1} \frac{dx}{x}$; then $0 \le I_n \le \ell n \left(\frac{n+1}{n}\right)$.	1
D3	$\lim_{n \to +\infty} \ell n \left(\frac{n+1}{n} \right) = \ell n (1) = 0 \; ; \; \text{then } \lim_{n \to +\infty} I_n = 0 \; .$	0.5