عدد المسائل : <u>سبعة</u> مسابقة في تايضايرلا قدام الاسم: المدة: ساعتان الرقم:

ملاحظة: يسمح باستعمال آلة حاسبة غير قابلة للبرمجة أو لاختزان المعلومات أو لرسم البيانات. يستطيع المرشح الإجابة بالترتيب الذي يناسبه (دون الالتزام بترتيب المسائل الوارد في المسابقة)

I- (1 point)

On donne
$$A = \frac{8}{7} - \frac{3}{7} \times \frac{14}{6}$$
 et $B = \frac{2,1 \times 10^4 \times 10^{-5}}{3 \times 10^2}$.

- 1) Ecrire A sous forme de fraction irréductible.
- 2) Ecrire B sous la forme $a \times 10^n$ où a et n sont deux entiers.

II- (1 ½ point)

Un sac contient un nombre de boules réparties de la manière suivante :

- 10 % des boules sont rouges
- 15 % des boules sont blanches
- $\frac{2}{5}$ des boules sont vertes
- 42 boules sont noires.
- 1) Trouver le pourcentage des boules vertes et celui des boules noires.
- 2) Calculer le nombre total des boules de ce sac.

III- (2 ½ points)

On donne $P(x) = 4x^2 - 9 + (x - 2)(2x + 3)$ et Q(x) = (2x + 3)(x - 1).

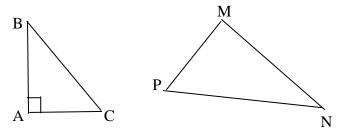
- 1) Démontrer que P(x) = (2x + 3)(3x 5).
- 2) Résoudre l'équation Q(x) = 0.

3) Soit
$$F(x) = \frac{P(x)}{Q(x)}$$
.

- a) Pour quelles valeurs de x, F(x) est-elle définie?
- b) Simplifier F(x), puis résoudre l'équation $F(x) = \sqrt{2}$, et donner la solution sous la forme $\frac{a+b\sqrt{2}}{c}$ où a, b et c sont des entiers.

IV- (3 points)

Un vidéo-club propose à ses clients deux offres A et B. Chaque offre est formée d'une somme payée une seule fois qu'on appelle abonnement et d'une autre somme qui sera payée pour chaque cassette louée :


	Abonnement en LL Prix en LL à payer pour chaque cassette lou		
Offre A	60 000	900	
Offre B	42 000	1 500	

- 1) Un premier client qui désire louer 20 cassettes choisit l'offre A. Combien doit-il payer?
- 2) On désigne par x le nombre de cassettes qu'un deuxième client désire louer.
 - a) Exprimer en fonction de x, le prix $S_1(x)$ que ce client doit payer s'il choisit l'offre A et le prix $S_2(x)$ qu'il doit payer s'il choisit l'offre B.
 - b) A partir de quel nombre de cassettes louées l'offre A sera-t-elle plus avantageuse que l'offre B ? (On conseille de commencer par résoudre l'inéquation $S_1(x) \le S_2(x)$.)
- 3) Un troisième client a choisi l'offre B et il a payé 93 000 LL.
 - a) Quel est le nombre de cassettes louées par ce client ?
 - b) Ce choix est-il le meilleur pour lui? Justifier.

V- (2 ½ points)

Dans la figure ci-contre (qui n'est pas faite en vraie grandeur) :

■ ABC est un triangle rectangle en A tel que AB = 6 cm et $tanACB = \frac{3}{2}$.

■ MNP est un triangle semblable à ABC tel

que
$$\frac{MN}{AB} = \frac{MP}{AC} = \frac{5}{4}$$
.

- 1) Trouver l'arrondi au degré près, de la mesure de l'angle ACB et écrire sur la copie, la mesure de ACB affichée par la calculatrice.
- 2) Démontrer que le triangle MNP est rectangle en M et que $\overline{ACB} = \overline{MPN}$.
- 3) Calculer NP.

VI- (3 points)

On donne un demi-cercle (C) de centre O, de rayon R et de diamètre [AB]. Soit M un point de (C) distinct de A et B. La tangente en M à (C) coupe la tangente en A au point N et la tangente en B au point P. (OP) coupe [MB] en D et (ON) coupe [AM] en E.

- 1) Faire une figure.
- 2) Démontrer que D est le milieu de [MB] et que E est celui de [MA].
- 3) Calculer ED en fonction de R.
- 4) Démontrer que ODME est un rectangle.
- 5) Soit J le milieu de [DE]. Démontrer que, si M se déplace sur (C), J se déplace sur un demi-cercle dont on déterminera le centre et le rayon.

VII- (6 ½ points)

Dans un repère orthonormé d'axes x'Ox et y'Oy où l'unité de longueur est 1 centimètre, on donne les points A(0;-4), E(0;1), F(4;-1) et la droite (d) d'équation $y=-\frac{1}{2}x+1$.

- 1) Placer les points A, E et F.
- 2) Vérifier par le calcul, que E et F sont deux points de (d), puis tracer (d).
- 3) Montrer que I(2; 0) est le milieu de [EF].
- 4) On admet que $EF = 2\sqrt{5}$.
 - a) Calculer AE et AF. En déduire que le triangle AEF est isocèle de sommet principal A.
 - b) La droite (AI) est-elle perpendiculaire à (EF)? Justifier.
- 5) Soit B le symétrique de A par rapport à I.
 - a) Démontrer que AFBE est un losange.
 - b) Calculer les coordonnées de B.
- 6) Soit (d') la droite passant par B et parallèle à (d). Déterminer l'équation de (d').
- 7) (AE) et (AF) coupent (d') respectivement en M et N. Démontrer que EMNF est un trapèze isocèle et calculer son aire.

امتحانات الشهادة المتوسطة توزيع علامات مسابقة الرياضيات

Questions		Eléments de réponses	
	1	$A = \frac{8}{7} - 1 = \frac{1}{7}.$	1/2
I	2	$A = \frac{8}{7} - 1 = \frac{1}{7}.$ $B = \frac{21 \times 10^{-2}}{3 \times 10^{2}} = 7 \times 10^{-4}$	1/2
п		Le pourcentage des boules vertes $\frac{2}{5} \times 100 = 40\%$	1/2
	1	Le pourcentage des boules noires $100 - (10 + 15 + 40) = 35\%$	1/2
	2	Le nombre des boules de ce sac est 120.	1/2
III	1	P(x) = (2x - 3)(2x + 3) + (x - 2)(2x + 3) = (2x + 3)[(x - 3) + (x - 2)]. = $(2x + 3)(3x - 5)$ ou bien, développement	1/2
	2	$Q(x) = 0$; $x = -\frac{3}{2}$ ou $x = 1$.	1/2
	3a	F(x) est définie pour $x \neq -\frac{3}{2}$ et $x \neq 1$.	1/2
	3b	$F(x) = \frac{3x - 5}{x - 1}; \ 3x - 5 = \sqrt{2}(x - 1); \ x = \frac{5 - \sqrt{2}}{3 - \sqrt{2}} = \frac{13 + 2\sqrt{2}}{7}$	1/4 ; 3/4
IV	1	$60\ 000 + 900 \times 20 = 60\ 000 + 18\ 000 = 78\ 000\ LL$	1/2
	2a	$S_1(x) = 60\ 000 + 900x$ $S_2(x) = 42\ 000 + 1\ 500x$	1/2
	2b	$S_2(x) = 12000 + 1300x$ $S_1(x) \le S_2(x)$; $60000 + 900x \le 42000 + 1500x$; $x \ge 30$ cassettes.	3/4
	3a	$42\ 000 + 1\ 500x = 93\ 000$; $x = 34\ cassettes$.	1/2
	3b	Non, le nombre des cassettes est plus grand que 30.	1/2
	1	ACB = 56,30993247 calculatrice 56° est l'arrondi	1/2 1/4
	2	PMN = 90° car ; ACB = MPN car	1/2 ; 1/4
V		$\tan ACB = \frac{3}{2} = \frac{6}{AC}$ donc $AC = 4$. $BC = \sqrt{52} = 2\sqrt{13}$.	1/2
	3	$\frac{\text{NP}}{\text{BC}} = \frac{5}{4} \text{ alors NP} = \frac{5\sqrt{13}}{2}$	1/2
VI		fig	
	1	N (C) B	1/2

Questi	ions	Eléments de réponses			
suite	0	D milieu de [MB] car			
VI	2	E milieu de [MA] car			
	3	ED = R			
	4	ODME est un rectangle car	3/4		
	5	J se déplace sur un demi-cercle de centre O et de rayon $\frac{R}{2}$.	1/2		
VII	2	A; E et F E est un point de (d) car, F est un point de (d) car Tracé de (d).	3/ ₄ 1/ ₄ ; 1/ ₄ ; 1/ ₄		
	3	$x_{I} = \frac{x_{E} + x_{F}}{2} = 2$; $y_{I} = \frac{y_{E} + y_{F}}{2} = 0$.			
	4a	AE = AF = 5 AEF est un triangle isocèle de sommet principal A.			
	4b	(AI) est perpendiculaire à (EF) car			
	5a	AFBE est un losange car			
	5b	B(4;4)			
	6	$y = -\frac{1}{2}x + b \text{ car pente de (d)} = \text{pente de (d')} = -\frac{1}{2}$ $y = -\frac{1}{2}x + 6 \text{ car (d') passe par B.}$			
		2			
	7	EMNF est un trapèze isocèle car $\mathbf{A}_{\text{EMNF}} = \frac{(\text{MN} + \text{EF}) \times \text{IB}}{2} = \frac{6\sqrt{5} \times 2\sqrt{5}}{2} = 30 \text{cm}^2$	1/2		