دورة سنة2007 العادية

امتحانات شهادة الثانوية العامة فرع العلوم العامة

وزارة التربية والتعليم العالي المديرية العامة للتربية دائرة الامتحانات

N. 94	مسابقة في مادة الرياضيات	عدد المسائل: ست
الاسم:	_ "	
ال قرم	المدة: أربع ساعات	
الرقم:	•	

ملاحظة: :يسمح باستعمال آلة حاسبة غير قابلة للبرمجة او اختزان المعلومات او رسم البيانات. يستطيع المرشح الإجابة بالترتيب الذي يناسبه (دون الالتزام بترتيب المسائل الوارد في المسابقة)

I - (2 points)

In the table below, only one among the proposed answers to each question is correct. Write down the number of each question and give, **with justification**, the answer corresponding to it.

NIO	Questions	Answers			
N°		a	b	С	d
1	$z = -\sqrt{3} - i$. An argument of \overline{z} is:	$-\frac{\pi}{6}$	$\frac{\pi}{6}$	$\frac{7\pi}{6}$	$\frac{5\pi}{6}$
2	$\left(e^{i\frac{\pi}{4}}\right)^{12} =$	1	-1	e ³	3
3	$C_{10}^6 - C_9^6 =$	1	C ₉ ⁵	C ₁₉	0
4	h is a function defined on IR by $h(x) = \frac{1}{4+x^2}$; A primitive H of h is given by $H(x) =$	$\arctan \frac{x}{2}$	$\ln(4+x^2)$	$\frac{1}{2}\arctan\frac{x}{2}$	2 arctan x
5	$\lim_{x \to +\infty} \frac{\ln(e^x + 1)}{x} =$	1	0	e	+∞
6	If the affixes of points A, B and C verify the relation $\frac{z_A - z_B}{z_A - z_C} = 2 \text{, then}$	C is the midpoint of [AB]	B is the midpoint of [AC]	A, B and C form a right triangle	A, B and C belong to the same circle

II–(3 points)

In the space referred to a direct orthonormal system (O; i, j, k), consider the lines (d_1) and (d_2)

- 1) Prove that (d_1) and (d_2) are orthogonal and skew.
- 2) Verify that the vector $\stackrel{\rightarrow}{n}$ (-1; 1;1) is orthogonal to (d₁) and (d₂).
- 3) Prove that an equation of the plane (P) containing (d_1) and parallel to n is x y + 2z 3 = 0.
- 4) The line (d₂) cuts the plane (P) at B. Determine the coordinates of B.
- 5) Prove that the line (D), passing through B and having \vec{n} as a direction vector, cuts the line (d₁) at the point A (1;0;1).
- 6) Let (Q) be the plane containing (d_1) and perpendicular to plane (P), and let M be a variable point on (d_2) .

Prove that the distance from M to (Q) is equal to AB.

III- (3 points)

Consider, in an oriented plane, a direct rectangle AEFD

such that:
$$(\overrightarrow{AE}, \overrightarrow{AD}) = \frac{\pi}{2} (2\pi)$$
, $AE = 2\sqrt{2}$ and $AD = 2$.

Designate by B and C the midpoints of [AE] and [FD] respectively. Let S be the direct plane similitude that transforms A onto C and E onto B.

- 1) a- Determine the ratio k and an angle α of S.
 - b- Show that S(F) = E and deduce S(D).
- 2) Let W be the center of S and let h be the transformation defined by $h = S \circ S$.
 - a- Determine the nature and the characteristic elements of h.
 - b- Find h(D) and h(F) and construct the point W.
- 3) Designate by I the mid point of [BE].
 - a- Prove that W, C and I are collinear.
 - b-Express WC in terms of WI.
- 4) The complex plane is referred to the orthonormal system $(A; \overrightarrow{u}, \overrightarrow{v})$ where $z_B = \sqrt{2}$ and $z_D = 2i$.
 - a- Find the complex form of S.
 - b- Determine the affix of W.

IV- (2 points)

Mr. Khalil has three sons: Sami, Farid and Zahi, all are married and have children.

The children in these three families are distributed as shown in the table below:

	Sami's Family	Farid's Family	Zahi's Family
Girls	2	1	3
Boys	2	3	1

The grandfather Khalil wants to choose randomly **one child from each family** to accompany him to their village.

- 1) What is the probability that he chooses three girls?
- 2) Consider the following events:

G: «The child chosen from Sami's family is a girl ».

B: «The child chosen from Sami's family is a boy ».

A: «The three chosen children are two girls and one boy ».

a- Prove that the probability p(A/G) is equal to $\frac{5}{8}$.

b- Calculate p (A/B) and p (A).

3) Let X be the random variable that is equal to the number of girls chosen by the grandfather. Determine the probability distribution of X.

V-(3 points)

In the plane referred to an orthonormal system (O; i, j), consider the points A(5;0), F(3;0) and the line (δ) of equation $x = \frac{25}{3}$.

Let (E) be the ellipse with focus F, directrix (δ), eccentricity **e** and having A as a principal vertex.

- 1) a- Verify that $\mathbf{e} = \frac{3}{5}$.
 - b- Verify that the point A' (-5; 0) is the other principal vertex of (E) and deduce the center of (E).
 - c- Write an equation of (E) and draw (E).
 - d- Calculate the area of the region bounded by the ellipse (E) and its auxiliary (principal) circle.
- 2) Let G and G' be the points on (E) with abscissa 3.
 - a- Write an equation of the tangent (D) to (E) at G, and an equation of the tangent (D') to (E) at G' .
 - b- Verify that the lines (D), (D') and (δ) intersect at the same point H on the axis of abscissas.
 - c- Show that tan FHG = e.

VI-(7points)

- **A-** Consider the function f defined on IR by $f(x) = x + xe^{-x}$ and let (C) be its representative curve in orthonormal system (O; i, j) (unit: 2 cm.)
 - 1) a- Calculate $\lim_{x \to +\infty} f(x)$ and show that the line (d) of equation y = x is an asymptote to (C).
 - b- Calculate $\lim_{x \to -\infty} f(x)$ and $\lim_{x \to -\infty} \frac{f(x)}{x}$.
 - 2) a- Calculate f'(x) and f''(x).
 - b- Set up the table of variations of f' and deduce that f'(x) > 0.
 - c- Show that the curve (C) has a point of inflection whose coordinates are to be determined.
 - d- Set up the table of variations of f.
- 3) Determine the coordinates of a point A on the curve (C) at which the tangent (T) is parallel to the line (d) of equation y = x.
- 4) Show that the equation f(x) = 1 has a unique root α and verify that $0.65 < \alpha < 0.66$.
- 5) Draw (d), (T) and (C).
- 6) Calculate, in cm², the area of the region bounded by the curve (C), the asymptote (d) and the two lines of equations x = 0 and x = 1.
- 7) Designate by g the inverse function of f , and by (G) the representative curve of g in the system (O; i , j).
 - Specify the asymptote and the asymptotic direction of (G), and draw (G).
- **B-** Let f_n be the function defined on IR by $f_n(x) = x + x^n e^{-x}$ (n is a non-zero natural integer) and consider the sequence (U_n) defined by $: U_n = \int_0^1 [f_n(x) x] dx$.
- 1) Determine the value of U_1 .
- 2) Show that $0 \le x^n e^{-x} \le 1$ on [0; 1], and deduce that the sequence (U_n) is bounded.
- 3) Prove that the sequence (U_n) is decreasing. Is the sequence (U_n) convergent? Justify.

Q1	MATH GS \ FIRST SESSION 2007		M
1	$\overline{z} = -\sqrt{3} + i = 2(-\frac{\sqrt{3}}{2} + \frac{1}{2}i) = 2e^{i\frac{5\pi}{6}}.$	₽d	
2	$\left(e^{i\frac{\pi}{4}}\right)^{12} = e^{i(3\pi)} = -1.$	₽→b	
3	$C_{10}^6 - C_9^6 = C_9^6 + C_9^5 - C_9^6 = C_9^5$.	ı-b	
4	$\int \frac{dx}{4+x^2} = \frac{1}{2} \int \frac{\frac{1}{2} dx}{1+(\frac{x}{2})^2} = \frac{1}{2} \arctan \frac{x}{2} + C$	8→ C	4
5	$\lim_{x \to +\infty} \frac{\ln(e^x + 1)}{x} = \lim_{x \to +\infty} \frac{e^x}{e^x + 1} = 1$	₃⊸a	
6	$\frac{z_A - z_B}{z_A - z_C} = 2; \overrightarrow{BA} = 2\overrightarrow{CA}; C \text{ is the mid point of [AB]}.$	₽-a	

Q2	MATH GS FIRST SESSION 2007	M
1	$\overrightarrow{V}_1.\overrightarrow{V}_2 == -1 + 1 = 0, \text{ so } (d_1) \text{ is orthogonal to } (d_2).$ $(d_1) \cap (d_2): \begin{cases} m = -t + 1 \\ m - 1 = t \end{cases}; \begin{cases} m = 1 \\ t = 0 \text{ and since } (d_1) \text{ is not parallel to } (d_2), \\ 1 = -2t + 4 \end{cases}$ thus (d_1) and (d_2) are skew.	1
2	$\vec{n} \cdot \vec{V}_1 = -1 + 1 = 0 \; ; \; \vec{n} \cdot \vec{V}_2 = 1 + 1 - 2 = 0.$	1/2
3		1
4	$(d_2) \cap (P) = \{B\}$; $-t + 1 - t - 4t + 8 - 3 = 0$; $-6t = -6$; $t = 1$, consequently B $(0; 1; 2)$	1
5	n and \overrightarrow{V}_1 are not parallel thus (D) is not confounded with (d_1) . $(D)\begin{cases} x = -\lambda \\ y = \lambda + 1 ; A(1;0;1) \in (D) \text{ for } \lambda = -1 \text{ and } A(1;0;1) \in (d_1) \text{ for } m = 1. \\ z = \lambda + 2 \end{cases}$	1
6	$(Q): \overrightarrow{IM}.(\overrightarrow{V}_1 \wedge \overrightarrow{N}_P) = 0; \begin{vmatrix} x & y+1 & z-1 \\ 1 & 1 & 0 \\ 1 & -1 & 2 \end{vmatrix} = 0; \ 2x-2(y+1)+(z-1)(-2) = 0; \\ x-y-1-z+1=0; (Q): \ x-y-z=0.$	11/2

	$M(-t+1;t;-2t+4); d(M;(Q)) = \frac{ -t+1-t+2t-4 }{\sqrt{3}} = \sqrt{3}. \overrightarrow{AB}(-1;11); AB = \sqrt{3}.$		
	• OR: (P) \perp (AB) and (d ₂) \perp (AB) then (d ₂) // (P) and all the points on (d ₂) have		
	the same distance from (P); so $d(B; (Q)) = BA$ since $(BA) \perp (Q)$.		
Q.3	MATH GS \ FIRST SESSION 2007		
	$S: A \longrightarrow C \text{ and } S: E \longrightarrow B$		
1-a	$K = \frac{BC}{AE} = \frac{2}{2\sqrt{2}} = \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2}$ and $\alpha = (\overrightarrow{AE}, \overrightarrow{CB}) = -\frac{\pi}{2}$.	1/2	
	$S(E) = B$; $\frac{BE}{EF} = \frac{\sqrt{2}}{2}$ and $(\overrightarrow{EF}, \overrightarrow{BE}) = -\frac{\pi}{2}$. Thus $S(F) = E$.		
1-b	$A \longrightarrow C$ thus S(D) is the 4th vertex of the direct rectangle with vertices C, B, E. because	1	
	$E \longrightarrow B$ AEFD is a direct rectangle, so $S(D) = F$.		
	$F \longrightarrow E$		
	$h = SoS$ is a similar with center W, angle $-\pi$ and ratio $\frac{1}{2}$, consequently it is the		
2-a		1/2	
	homothecy $h\left(W, -\frac{1}{2}\right)$.		
2-b	$h(D) = SoS(D) = S(F) = E \text{ and } h(F) = SoS(F) = S(E) = B. \text{ Then } \{W\} = (ED) \cap (BF).$	1	
3-a	C midpoint of [DF] then h(C) is midpoint of [BE], thus h(C) = I and W, I, C are collinear.	1	
3-b	\rightarrow 1 \rightarrow \rightarrow		
	$\sqrt{2}$ $-i^{\frac{\pi}{-}}$ $\sqrt{2}$ 4-b		
	$z' = \frac{\sqrt{2}}{2} e^{-i\frac{\pi}{2}} z + b \; ; z' = -\frac{\sqrt{2}}{2} i z + b \; .$		
4-a	$z' = \frac{\sqrt{2}}{2}e^{-\frac{1}{2}}z + b; z' = -\frac{\sqrt{2}}{2}iz + b.$ $S(A) = C; z_C = b = \sqrt{2} + 2i;$ $z_W = \frac{\sqrt{2} + 2i}{1 + \frac{\sqrt{2}i}{2}} = \frac{4\sqrt{2}}{3} + \frac{2}{3}i$		
T "	$\sqrt{2}$		
	$z' = -\frac{\sqrt{2}}{2}i.z + \sqrt{2} + 2i$		
OIV	MATH CO FIRST SESSION 2007		
QIV	MATH GS ■ FIRST SESSION 2007 2 1 3 6 3	M	
1	$P(3 \text{ girls}) = \frac{2}{4} \times \frac{1}{4} \times \frac{3}{4} = \frac{6}{64} = \frac{3}{32}$	1	
	A/G is the event: A girl from Farid's family with a boy from Zahi's family or a boy from Farid's		
2a	family and a girl from that of Zahi.	1/2	
24	$P(A/G) = \frac{1}{4} \times \frac{1}{4} + \frac{3}{4} \times \frac{3}{4} = \frac{10}{16} = \frac{5}{8}$, 2	
	A/B is the event: A girl from Farid's family and a girl from Zahi's.		
21	$P(A/B) = \frac{1}{4} \times \frac{3}{4} = \frac{3}{16}$ and		
	4 4 16	1	
2b	$P(A) = P(A \cap G) + P(A \cap B) = P(G) \times P(A/G) + P(B) \times P(A/B)$	1	
20	$P(A) = P(A \cap G) + P(A \cap B) = P(G) \times P(A/G) + P(B) \times P(A/B)$	1	
20	$P(A) = P(A \cap G) + P(A \cap B) = P(G) \times P(A/G) + P(B) \times P(A/B)$ $= \frac{1}{2} \times \frac{5}{8} + \frac{1}{2} \times \frac{3}{16} = \frac{10}{32} + \frac{3}{32} = \frac{13}{32}$	1	
3	$P(A) = P(A \cap G) + P(A \cap B) = P(G) \times P(A/G) + P(B) \times P(A/B)$	1 11/2	

	$P(X=0) = \frac{1}{2} \times \frac{3}{4} \times \frac{1}{4} = \frac{3}{32} ; P(X=1) = 1 - \left(\frac{3}{32} + \frac{13}{32} + \frac{3}{32}\right) = \frac{13}{32}$	
QV	MATH GS FIRST SESSION 2007	M
1a	$e = \frac{AF}{AH} = \frac{2}{\frac{25}{5} - 5} = \frac{3}{5}$	1/2
1b	$\frac{A'F}{A'H} = \frac{5+3}{\frac{25}{3}+5} = \frac{3}{5}$; and A' belongs to focal axis (AF), then A' is a principal vertex of (E).	1/2
	The center is O the midpoint of [AA'].	
1c	a = 5, c = 3, $b^2 = a^2 - c^2 = 25 - 9$ = 16, thus the equation of (E) is $\frac{x^2}{25} + \frac{y^2}{16} = 1.$ 1½ A' O F A H	
1d	$A = \pi a^{2} - \pi ab$ $= 25 \pi - 20 \pi = 5\pi u^{2}$ 1	
2a	For $x = 3$; $\frac{y^2}{16} = 1 - \frac{9}{25} = \frac{16}{25}$; $y = \frac{16}{5}$ or $y = -\frac{16}{5}$; $G\left(3; \frac{16}{5}\right)$ and $G'\left(3; -\frac{16}{5}\right)$ (D): $\frac{x_0x}{a^2} + \frac{y_0y}{b^2} = 1$ gives $\frac{3x}{25} + \frac{\frac{16}{5}y}{16} = 1$; $\frac{3x}{25} + \frac{y}{5} = 1$; $y = -\frac{3}{5}x + 5$ (D'): $y = \frac{3}{5}x - 5$ by symmetry wrt the axis of abscissas.	1
2b	$\frac{3x}{5} - 5 = -\frac{3x}{5} + 5 \; ; \; x = \frac{25}{3} \text{ and } y = 0 \text{ then } (D) \cap (D') = \{H\} \; ; H = \left(\frac{25}{3}, 0\right)$	1
2c	$\tan F\hat{H}G = \frac{FG}{FH} = \frac{16/5}{25/3 - 3} = \frac{16}{5} \times \frac{3}{16} = \frac{3}{5} = e$	1/2
Q.6	MATH GS ▼ FIRST SESSION 2007	M
A- 1.a	$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} (x + x e^{-x}) = +\infty + 0 = +\infty$ $\lim_{x \to +\infty} (f(x) - x) = \lim_{x \to +\infty} (x e^{-x}) = 0 \text{ and so (d) is asymptote to (C)}.$	1
1.b	$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} (x + xe^{-x}) = -\infty - \infty = -\infty \; ; \lim_{x \to -\infty} \frac{f(x)}{x} = \lim_{x \to -\infty} 1 + e^{-x} = +\infty$	1
2.a	$f'(x) = 1 + e^{-x} - xe^{-x} = 1 + (1 - x) e^{-x}.$ $f''(x) = -e^{-x} - (1 - x) e^{-x} = e^{-x} (-1 - 1 + x) = (x - 2) e^{-x}.$	1

2.b 2.c	$\begin{array}{ c c c c c c }\hline f''(x) & -\infty & 2 & +\infty \\ f''(x) & -0 & + & & f'(x) \geq 1 - \frac{1}{e^2} \text{, thus } f'(x) > 0 \text{.} \\ \hline f''(x) & +\infty & 1 & & & \\ \hline f''(x) \text{ vanishes for } x = 2 \text{ and changing signs, so (C) has a point of inflection} \\ I\left(2, 2 + \frac{2}{e^2}\right) & & & & \\ \hline \end{array}$	1	
2.d	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		
4	f is continuous and strictly increasing from - ∞ to + ∞ , so $f(x) = 1$ has a unique root α . $f(0.65) = 0.98 < 1$ and $f(0.66) = 1.0011 > 1$ thus $0.65 < \alpha < 0.66$.	1	
5	$\int_{0}^{1} xe^{-x} \cdot dx = -\left[(x+1)e^{-x}\right]_{0}^{1} =$ $-\left[2e^{-1} - 1\right] = 1 - \frac{2}{e};$ $A = 4(1 - \frac{2}{e}).$ $= 4 - \frac{8}{e} = 1.057 \text{ cm}^{2}.$ $1\frac{1}{2}$	1	
7	The asymptote of (G) is the line of equation $y = x$; the asymptotic direction of (G) is the axis of abscissas.	1	
B.1	$U_1 = 1 - \frac{2}{e}$	1/2	
2	$0 \le x \le 1$; $0 \le x^n \le 1$; $-1 \le -x \le 0$; $e^{-1} \le e^{-x} \le 1$ thus $0 \le x^n e^{-x} \le 1$ $0 \le \int_0^1 x^n e^{-x} dx \le \int_0^1 1 dx$; $0 \le U_x \le 1$, so (U_x) is bounded.		
3	$U_{n+1} - U_n = \int_0^1 (x^{n+1}e^{-x} - x^ne^{-x}) . dx = \int_0^1 x^ne^{-x} (x-1) dx \; ; \text{ but } x-1 \leq 0 \text{ on } [0;1] \text{ then }$ $x^ne^{-x} (x-1) \leq 0 \text{ on } [0;1] \text{ and } U_{n+1} - U_n \leq 0 \text{ consequently } (U_n) \text{ is decreasing.}$ $(U_n) \text{ is decreasing and has a lower bound } 0 \text{ , so it converges to a limit } \ell$	1	