الدورة العادية للعام ٢٠٠٨	امتحانات الشهادة الثانوية العامة الفرع : علوم عامة	وزارة التربية والتعليم العالي المديرية العامة للتربية دائرة الامتحانات
لاسم: ارقم:	المدخيل ممسلمات	

ارشادات عامة :- يسمح باستعمال آلة حاسبة غير قابلة للبرمجة او اختزان المعلومات او رسم البياناتز - ستطيع المرشح الإجابة بالترتيب الذي يناسبه (دون الاتزام بترتيب المسائل الوارد في المسابقة)ز

I-(2 points)

Tell whether each of the following statements is true or false and justify your answer:

- 1) In an orthonormal system $(O; \vec{i}, \vec{j}, \vec{k})$, if A(2;-1;1); B(4;-2;2) and C(1;1;2) then the measure of the angle (BAC) is $\frac{\pi}{6}$ radian.
- 2) For all real numbers b, the equation $e^x = -x + b$ has a unique solution in IR.
- 3) If A and B are two points of affixes a = 1 + i and $b = 1 + i 2e^{i\frac{\pi}{6}}$ respectively, then B belongs to the circle with center A and radius 2.
- 4) f is a function given by $f(x) = -x^2 + 3$. For every function g such that $\lim_{x \to +\infty} g(x) = +\infty$, we get $\lim_{x \to +\infty} \frac{f(x)}{g(x)} = -1$.

II- (2 points)

The space is referred to an orthonormal system $\left(O\;;\;\vec{i}\;,\;\vec{j}\;,\vec{k}\;\right)$.

Consider the two straight lines (d)
$$\begin{cases} x = m - 1 \\ y = m \\ z = m + 1 \end{cases}$$
 and (d')
$$\begin{cases} x = 2t \\ y = t \\ z = -3t + 2 \end{cases}$$

where m and t are two real parameters.

- 1) Prove that (d) and (d') are not coplanar (skew).
- 2) Let (P) be the plane containing (d) and cutting (d') at the point E(0; 0; 2). Prove that an equation of (P) is x z + 2 = 0.
- 3) Consider in plane (P) the circle (C) with center E and radius R = 1.
 - a-Calculate the distance from E to (d) and prove that (C) cuts (d) at two points A and B.
 - b- Calculate the coordinates of the points A and B.
 - c- Calculate the area of triangle EAB.

III- (3 points)

- A- Two fair dice, each having six faces numbered from 1 to 6, are rolled. Let S designate the sum of the numbers on the two appearing faces, and consider the following events:
 - H: « the sum S is greater than or equal to 8 »,
 - C: « the sum S is less than or equal to 5 »,
 - E: « the sum S is equal to 6 or 7 ».

Show that the probability $P(H) = \frac{5}{12}$ and calculate P(C) and P(E).

B- 1) At a "Kermes" organized at the end of the school year, a students is in charge of a "stand" at which the following game is proposed:

The player rolls two fair dice each having six faces numbered from 1 to 6.

- If he gets a sum greater than or equal to 8, then he draws randomly one ticket from a bag that contains 30 tickets out of which 20 win.
- If he gets a sum less than or equal to 5, then he draws randomly one ticket from another bag that contains 30 tickets out of which 10 win.
- But if the player gets a sum equal to 6 or 7, then he chooses randomly one of the two bags and draws a ticket at random from the chosen bag.

Designate by G the event: « the player wins a prize ».

- a- Calculate the probability that the player draws a winning ticket knowing that he got a sum greater than or equal to 8. Deduce $P(H \cap G)$.
- b- Show that $P(E \cap G) = \frac{11}{72}$.
- c- Calculate $P(C \cap G)$; then deduce the probability P(G) that the player draws a winning ticket.
- 2) The school administration announced that "everybody wins". To achieve this they decided to give to every player who draws a winning ticket the amount of 5000 LL, and to every player who draws a non-winning ticket the amount of:
 - 3000 LL if he realizes the event H and does not win,
 - 2000 LL if he realizes the event C and does not win.
 - 1000 LL if he realizes the event E and does not win.

Let X designate the random variable equal to the amount paid by the administration to a player.

2

Verify that $P(X = 3000) = \frac{5}{36}$ and determine the probability distribution for X.

IV- (3 points)

In the figure below, ABC and ADE are right isosceles triangles

such that AB=1; AD=2 and
$$(\overrightarrow{AB}; \overrightarrow{AC}) = (\overrightarrow{AD}; \overrightarrow{AE}) = \frac{\pi}{2} [2\pi]$$
.

Let O be the midpoint of [BE].

1) Let r be the rotation with center A and angle $\frac{\pi}{2}$, and h be the dilation with center E and ratio 2.

Let $f = r \circ h$.

- a- Prove that f is a similitude whose ratio and angle are to be determined.
- b- Determine f(O) and f(A) and deduce that (AO) is perpendicular to(CD).
- 2) Let s be the direct plane similitude that transforms A onto C and D onto A.
 - a- Precise the ratio and an angle of s.
 - b- Determine the image by s of the straight line (CD) and that of the straight line (AO).
 - c- Deduce the center I of s.
- 3) Let $g = f \circ s$ and A' be the symmetric of A with respect to D.
 - a- Prove that g is the symmetry with center D.
 - b- Deduce that f(C)=A'.
- 4) The complex plane is referred to a direct orthonormal system $(A; \overrightarrow{AB}; \overrightarrow{AC})$.
 - a- Determine the affixes of the points O, C and A'.
 - b- Write the complex form of f and determine the affix of its center Ω .

V- (3 points)

In an oriented plane consider the rectangle HOPK such that HO = 10, OP = 3 and $(\overrightarrow{HO}; \overrightarrow{HK}) = \frac{\pi}{2} \pmod{2\pi}$.

F and Q are two points on [OH] and [PK] respectively such that OF = PQ = 4.

Let (E) be the ellipse of foci O and F, and of directrix the line (HK) associated to F, and of eccentricity e.

A-

- 1) Determine the center of (E) and prove that $e = \frac{1}{2}$.
- 2) a- Show that the points P and Q belong to (E).
 - b- Determine the vertices that are on the focal axis of (E).
- 3) Let B be one of the vertices belonging to the non focal axis.
 - a- show that the triangle OBF is equilateral and plot B.
 - b- Draw (E).

B-

The plane is referred to a direct orthonormal system $(O; \vec{i}, \vec{j})$ such that $\overrightarrow{OF} = -4\vec{i}$ and $\overrightarrow{OP} = 3\vec{j}$.

- 1) Verify that $3x^2 + 4y^2 + 12x 36 = 0$ is an equation of (E).
- 2) Consider the line (d) passing through P and having slope $-\frac{1}{2}$. Prove that (d) is tangent to (E) at P
- 3) Write an equation of the tangent (T) at Q to (E) and verify that H belongs to (T).
- 4) The lines (d) and (T) intersect at a point R, and that (d) cuts the focal axis at a point G. Calculate the area of the regions bounded by the triangle RGH and the semi-ellipse

situated above the focal axis.

VI- (7 points)

A- Consider the differential equation (E): $y'-y=2e^{-x}$.

- 1) Determine the real number λ so that $y = \lambda e^{-x}$ is a solution of (E).
- 2) a- Solve the equation y' y = 0.
 - b- Deduce the general solution of (E).
 - c- Verify that the function g defined on IR, by $g(x) = e^{x} e^{-x}$ is a particular solution of (E).
- **B-** Consider the function f defined on IR by f(x) = g(x) 2x and designate by (C) its representative curve in an orthonormal systems (O; \vec{i} , \vec{j}).
 - 1) a- Prove that f is odd.
 - b- Calculate $\lim_{x \to +\infty} f(x)$ and $\lim_{x \to +\infty} \frac{f(x)}{x}$.
 - c- Verify that $f'(x) = e^{-x} (e^x 1)^2$.
 - d- Set up the table of variation of f.
 - 2) The adjacent figure shows the representative curve (γ) of the function h defined on $[0; +\infty[$

- a- Prove that $1.62 < \alpha < 1.63$.
- b- Using (γ) , prove that the curve (C) of f cuts the straight line (d) of equation y = x at three points whose abscissas are to be determined.

- 3) a- Calculate f(1) and f(2).
 - b- Draw (d) and (C).
- 4) a- Prove that f has an inverse function f⁻¹ and determine domain

 The domain of definition of f⁻¹.
 - b- Determine the values of x satisfying $1 < f^{-1}(x) < 2$.
 - c-Draw the representative curve (C') of f^{-1} in the system (O; \vec{i} , \vec{j}).
- 5) Calculate the area of the regions bounded by (C) and (C') in terms of α .
- C- Consider the sequence (U_n) defined by $U_0 \in]0$; $\alpha[$ and $U_{n+1} = f(U_n)$ for every n.
 - 1) Prove by mathematical induction on n that, for every n, $0 < U_n < \alpha$.
 - 2) Noticing that f(x) < x for every x in $]0;\alpha[$, prove that the sequence (U_n) is strictly decreasing . and deduce that it is convergent.

Q:I	Answer	Mark
1	$\cos (B \hat{A} C) = \frac{\overrightarrow{AB} \cdot \overrightarrow{AC}}{AB \times AC} \text{, but } \overrightarrow{AB} (2;-1;1) \text{ and } \overrightarrow{AC} (-1;2;1)$ $\text{so } \overrightarrow{AB} \cdot \overrightarrow{AC} = -2 - 2 + 1 = -3 \text{ and } AB = \sqrt{6} \text{ and } AC = \sqrt{6} \text{ ; consequently}$ $\cos B \hat{A} C = \frac{-3}{6} = -\frac{1}{2} \text{ and } B \hat{A} C = \frac{2\pi}{3} \text{ radians . The statement 1) is } \mathbf{false}.$	1
2	Consider the function U defined over IR by $U(x) = e^x + x - b$; $U'(x) = e^x + 1 > 0$ so U is strictly increasing over IR. Moreover, $\lim_{x \to -\infty} U(x) = -\infty$ and $\lim_{x \to +\infty} U(x) = +\infty$ Hence, U increases from $-\infty$ to $+\infty$ and it is continuous so the equation has a unique solution. Then the statement 2) is true .	1
3	$AB = b - a = -2e^{i\frac{\pi}{6}} = 2$. The statement 4) is true .	1
4	Let f be the function defined by $f(x) = -x^2 + 3$ and g the function defined by $g(x) = 3x^3 - 2x + 5$; then $\lim_{x \to +\infty} f(x) = -\infty$ and $\lim_{x \to +\infty} g(x) = +\infty$; $\lim_{x \to +\infty} \frac{f(x)}{g(x)} = \lim_{x \to +\infty} \frac{-x^2}{3x^3} = 0$. The statement 3) is false.	1

Q:II	Answer	Mark	
	Let $I(-1;0;1)$ be a point on (d) and $J(0;0;2)$ be a point on (d').	0.5	
1	$\overrightarrow{IJ}.(\overrightarrow{v_d} \wedge \overrightarrow{v_{d'}}) = -5 \neq 0$, hence (d) and (d') are not coplanar.	0.5	
	$\overrightarrow{EI} \wedge \overrightarrow{v_d}(1,0,-1)$ is a normal vector to plane (P) and $E \in (P)$; $(P): x-z+2=0$.	0.5	
2	Or: Verify that (d) is included in (P) and that (P) cuts (d') at E.	0.5	
3a	$d(E;(d)) = \frac{\left\ \overrightarrow{EI} \wedge \overrightarrow{V_d}\right\ }{\left\ \overrightarrow{V_d}\right\ } = \frac{\left\ \overrightarrow{i} - \overrightarrow{j}\right\ }{\sqrt{3}} = \frac{\sqrt{2}}{\sqrt{3}} = \frac{\sqrt{6}}{3}$	1	
	d(E;(d)) < R; then (C) cuts (d) at two points A and B.		
	EA = 1 gives $(m-1)^2 + m^2 + (m-1)^2 = 1$, hence $m'=1$, $m''=\frac{1}{3}$.		
3b	Therefore: A(0;1;2) and B $\left(-\frac{2}{3};\frac{1}{3};\frac{4}{3}\right)$.	1	
	Let H be the foot of the perpendicular drawn through E to (AB).		
3c	$HA^2 = EA^2 - EH^2 = 1 - \frac{6}{9} = \frac{3}{9}$;		
	The area of EAB = $\frac{EH \times 2HA}{2} = \frac{\sqrt{2}}{3} u^2$.		
	Or Area (EAB) = $\frac{\ \overrightarrow{EA} \wedge \overrightarrow{EB}\ }{2}$.		

Q:III	Answer								Mark				
	\mathbf{s}_{i}	2	3	4	5	6	7	8	9	10	11	12	
						$\frac{5}{36}$				$\frac{3}{36}$	$\frac{2}{36}$	$\frac{1}{36}$	
A	* $P(H) = P(S \ge 8) = \frac{15}{36} = \frac{5}{12}$; * $P(C) = P(S \le 5) = \frac{10}{36} = \frac{5}{18}$.							1.5					
	* P(E)	= P(S =	6 OR	S = 7) =	$=\frac{11}{36}$.								
B1a	P(G/H)	$=\frac{20}{30}$	$=\frac{2}{3}$;	P(G∩H	= P(H)	$) \times P(G/G)$	$(H) = \frac{5}{12}$	$\frac{5}{2}x\frac{2}{3} =$	$\frac{10}{36} = -$	<u>5</u> 18			1
B1b	$P(G \cap E) = P(E) \times P(G/E) = \frac{11}{36} \left(\frac{1}{2} \times \frac{2}{3} + \frac{1}{2} \times \frac{1}{3} \right) = \frac{11}{36} \times \frac{1}{2} = \frac{11}{72}.$								1				
Б10	$P(G/C) = \frac{10}{30} = \frac{1}{3}$; $P(G \cap C) = P(C) \times P(G/C) = \frac{5}{18} \times \frac{1}{3} = \frac{5}{54}$.								1				
B1c	$P(G) = P(G \cap H) + P(G \cap C) + P(G \cap E) = \frac{5}{18} + \frac{5}{54} + \frac{11}{72} = \frac{113}{216}.$									1			
	$P(X = 3000) = P(H \cap \overline{G}) = P(H) - p(H \cap G) = \frac{5}{36}.$												
B2	$P(E \cap \overline{G}) = P(E) - P(G \cap E) = \frac{11}{36} - \frac{11}{72} = \frac{11}{72};$												
	$P(C \cap \overline{G}) = P(C) - P(G \cap C) = \frac{5}{18} - \frac{5}{54} = \frac{5}{27}$								1.5				
		1 0	000	2 000	3 000	50							
	r	$P_i \mid \frac{1}{7}$	2	$\frac{3}{27}$	$\frac{3}{36}$	$\frac{11}{21}$	6						

Q:IV	Answer	Mark
1a	f is the composite of a dilation h and a rotation r; f is a similar a similar and a rotation $\frac{\pi}{2}$.	0.5
1b	h(O)=B and $r(B)=C$ so $f(O)=C$; $f(A)=E'$ that is the symmetric of E with respect to A and $r(E')=D$, therefore $f(A)=D$ and consequently the image of the straight line (OA) by f is (CD). Hence, (OA) and (CD) are perpendicular.	1
2a	Ratio of $s = \frac{CA}{AD} = \frac{1}{2}$ and angle of $s = (\overrightarrow{AD}; \overrightarrow{CA}) = (\overrightarrow{AD}; \overrightarrow{AE}) = \frac{\pi}{2} [2\pi]$	0.5
2b	 s (D)=A then the image of the straight line (CD) is the straight line passing through A and perpendicular to (CD); it is then the straight line (OA). s (A)=C then the image of the straight line (AO) is the straight line passing through C and perpendicular to (AO); it is then the straight line (CD). 	1
2c	Let I be the point of intersection of (AO) and (CD) and let $I'=s(I)$: $I \in (AO)$ so $I' \in s(AO) = (CD)$, and $I \in (CD)$ so $I' \in s(CD) = (AO)$. So, the intersection of (AO) and (CD) is $I'=I$. Therefore, $s(I)=I$ and I is the center of s.	0.5
3a	g is the composite of two similitudes, then it is the similitude of ratio $2 \times \frac{1}{2} = 1$ and angle $\frac{\pi}{2} + \frac{\pi}{2} = \pi$; so g is a central symmetry. Moreover, $g(D) = f(s(D)) = f(A) = D$ then g is the central symmetry of center D.	1
3b	$g(A) = A'$ then $f \circ s(A) = A'$ therefore $f(s(A)) = A'$ but $s(A) = C$. Hence, $f(C) = A'$	0.5
4a	z_C =i and z_A = -4. Similarly, z_B =1 and z_E = -2i. Thus z_O = $\frac{1}{2}$ - i.	0.5
4b	The complex form of f is z'=az +b with a= $2e^{i\frac{\pi}{2}}$ =2i; f(C)=A' then $z_{A'}$ =2i z_{C} +b \Leftrightarrow $-4 = 2i(i)$ +b so $b = -4 + 2 = -2$ Thus the complex form of f becomes: $z' = 2i z - 2$, and $z \Omega = \frac{b}{1-a} = \frac{-2}{1-2i} = \frac{-2(1+2i)}{5} = \frac{-2}{5} - \frac{4}{5}i$	0.5

Q:V	Answer	Mark
A1	O' is the mid point of [OF], $2c = 4$ and $c = 2$, O'H= $\frac{a^2}{c} = 8$ gives $a = 4$ Thus $e = \frac{c}{a} = \frac{1}{2}$.	0.5
A2a	$PF^2 = PO^2 + OF^2 = 25$, $\frac{PF}{PK} = \frac{1}{2}$ and $\frac{QF}{QK} = \frac{1}{2}$. Thus the points P and Q belong to (E).	1
A2b	The vertices of (E) on the focal axis are the points A and A', situated on (OH) such that O'A=O'A'= 4.	0.5
A3a	$c^2 = a^2 - b^2$, then $b = 2\sqrt{3}$, $\tan O'\hat{F}B = \sqrt{3}$ and so $O'\hat{F}B = 60^\circ$, thus BF = BO and the triangle OBF is equilateral.	0.5
A3b	$K \qquad Q \qquad B \qquad P \qquad (d) \qquad X \qquad A' \qquad -5 \qquad F \qquad Q' \qquad 0 \qquad A \qquad 5 \qquad G$	0.5
B1	$\frac{(x+2)^2}{16} + \frac{y^2}{12} = 1 ; 3x^2 + 4y^2 + 12x - 36 = 0$	0.5
B2	Differentiating $\frac{(x+2)^2}{16} + \frac{y^2}{12} = 1$ wrt x , we get $\frac{2(x+2)}{16} + \frac{2yy'}{12} = 0$. At point P(0, 3), the slope is $y' = -\frac{1}{2}$. An equation of the tangent at P to (E) is $y = -\frac{1}{2}x + 3$.	1
В3	An equation of (T) is $y = \frac{1}{2}x + 5$. H(-10; 0) belongs to (T) .	0.5
В4	H(-10; 0) belongs to (T). $G(6;0)$, $L(-10;0)$ and $R(-2;4)$, $L = H$. Area of RGL = $\frac{HG \times RO'}{2} = \frac{16 \times 4}{2} = 32$. Area of « semi-ellipse » = $\frac{\pi ab}{2} = 4\pi\sqrt{3}$. $A = (32 - 4\pi\sqrt{3}) u^2$.	1

Q:VI				Answer	Mark				
A1	$\lambda = -1$.	0.5	A2	$y = Ce^x$; $C \in IR$.	0.5				
A3	$y = Ce^x - e^{-x}.$	0.5	A4	g is the particular solution of (E) that corresponds to $C = 1$.	0.5				
B1a	$D_f = IR$; D_f is centered at 0 and $f(-x) = -f(x)$.								
B1b	$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty}$	$x[\frac{e^x}{x}-1]$	$=+\infty$	and $\lim_{x \to +\infty} \frac{f(x)}{x} = +\infty$.	0.5				
B1c	$f'(x) = e^x + e^{-x} - 2 = e^{-x}(e^x - 1)^2$.								
B1d		$\frac{\frac{x}{f'(f')}}{f(f')}$	(x) (x) (x)	$\begin{array}{c c} & 0 & +\infty \\ & + & 0 & + \\ \hline & & & & +\infty \end{array}$	1				
B2a	h(x) = g(x) - 3x \alpha is the non zero s $h(1.62) \times h(1.63)$	olution of h	$(\mathbf{x}) = 0$); $h(1.62) = -0.004$ and $h(1.63) = 0.0179$	1				
B2b		uation h(x)	= 0 ha	s three solution $-\alpha$; 0 and α . 3 roots: $-\alpha$; 0; α .	1				
B3a	$f(1) = e - e^{-1} - 2$	≈ 0.35 an	d f(2	$e^{2} = e^{2} - e^{-2} - 4 \approx 3.25 .$	0.5				
B3b				(C) (d) (C') (C')	1.5				
B4a	f is continuous and f^{-1} is defined on			g on IR; hence, f has an inverse function f^{-1} . R.	1				
B4b	f is strictly increas $e - e^{-1} - 2 < x <$	_		f(x) < 2 is equivalent to $f(1) < x < f(2)$; that is $f(3) < x < 3.25$	1				
B4c				the straight line (d) of equation $y = x$.	0.5				
B5	$\int_{0}^{\alpha} [x - f(x)] dx =$	$=4\left[\frac{1}{2}x^2-\right]$	$e^{x} - \epsilon$	$e^{-x} + x^2 \bigg]_0^{\alpha} = 6\alpha^2 + 8 - 4(e^{\alpha} + e^{-\alpha})$ units of area.	1				
C1	$0 < U_0 < \alpha$; if $0 <$	$U_n < \alpha$, the	hen f($0) < f(U_n) < f(\alpha)$; that is $0 < U_{n+1} < \alpha$.	1				
C2	For all real number therefore $U_{n+1} < U_n$. This sequence (U_n	rs $x \in]0$; α) is strictly	α[, f($f(x) < x$; and $U_n \in]0$; $\alpha[$ then $f(U_n) < U_n$;	1				