امتحانات الشهادة الثانوية العامة الفرع: آداب و إنسانيات

وزارة التربية والتعليم العالي المديرية العامة للتربية دائرة الامتحانات

N.*1		# NI# 1:1 11
الاسم:	مسابقة في مادة الرياضيات	عدد المسائل: ثلاث
اأ، قَم،	المدة: ساعة	
الرحم:	المدة. ساحة	

ملاحظة: يسمح باستعمال آلة حاسبة غير قابلة للبرمجة أو اختزان المعلومات أو رسم البيانات. يستطيع المرشح الإجابة بالترتيب الذي يناسبه (دون الالتزام بترتيب المسائل الوارد في المسابقة).

I- (5 points)

A clothing store has a stock of 4400 shirts and 2600 caps.

They are stored in packages of two types A and B.

In each package of type A, there are 110 shirts and 100 caps.

In each package of type B, there are 220 shirts and 100 caps.

- 1) Calculate the number of packages of type A and the number of packages of type B.
- 2) A merchant buys all of these packages at the price of 1 100 000 LL for each package of type A, and 1 300 000 LL for each package of type B. He decides to sell the cap and the shirt at the price of 5 500 LL each. Determine the profit to be achieved by the merchant upon selling the whole stock.
- 3) What is the percentage of the profit relative to the purchase price?

II- (5 points)

The advertising department in a T.V. station produced an advertisement for a new game-show. The marketing department in this station conducted a survey on a population of 500 persons concerning the efficacy of this advertisement.

1) Copy and complete the following table:

Number of persons who	Watched the show	Did not watch the show	Total
Saw the advertisement	200		
Did not see the advertisement		160	
Total		240	500

We interview a person chosen at random from this population.

- 2) Consider the following events:
 - A: « The interviewed person watched the show ».
 - B: « The interviewed person saw the advertisement ».
 - a- Determine the probabilities p(A), p(B), $p(A \cap B)$ and $p(A \cup B)$.
 - b- Determine p(A/B), $p(\overline{A}/B)$ and $p(\overline{A}/\overline{B})$.
- 3) Determine the probability of the event:

"The interviewed person did not watch the show **or** did not see the advertisement".

III- (10 points)

The curve (C) shown below is the representative curve of a function f defined over $]-\infty$; $1 [\cup] 1$; $+\infty[$ in an orthonormal system.

- 1) Determine f (2) and f (0).
- 2) Set up the table of variations of f.
- 3) Compare, with justification, f(3) and f(5).
- 4) For which values of x is f(x) > 0?
- 5) What is the sign of f'(-1)?
- 6) What are the equations of the asymptotes of (C)?
- 7) Suppose that $f(x) = ax + b + \frac{c}{x-1}$. Calculate a, b and c.
- 8) Solve the equation f(x) = 2x 2.

QI	Answer	Mark
1	Let x be the number of type A packages and y be the number of type B packages. $\begin{cases} 110x + 220y = 4400 \\ 100x + 100y = 2600 \end{cases}$ $x = 12 \; ; \; y = 14.$	2
2	 The purchase price of all the packages is: (12×1 100 000) + (14×1 300 000) = 31 400 000LL. The selling price of all the packages is: 7 000 ×5 500 = 38 500 000LL. The profit achieved is: 38 500 000 - 31 400 000 = 7 100 000LL. 	2
3	$\frac{7\ 100\ 000}{31\ 400\ 000} \times 100 = 22.6\%$	1

QII			Answer			Mark
	Number of persons who	Watched the show	Didn't watch the show	Total		
	Saw the advertisement	200	80	280		
1	Didn't see the advertisement	60	160	220		1
	Total	260	240	500		
	260 13	2	80 14			
	• $p(A) = \frac{1}{500} = \frac{1}{25}$	• $p(B) = \frac{1}{5}$	$\frac{1}{100} = \frac{1}{25}$			
2a				2		
2b	• $p(A/B) = \frac{200}{280} = \frac{5}{2}$	• $p(\overline{A}/B)$	$=\frac{80}{280}=\frac{2}{7}$	• p(\overline{A}/	$\overline{B}) = \frac{160}{220} = \frac{8}{11}$	1
	$p(\overline{A} \cap \overline{B}) - \frac{160}{\overline{A}} - \frac{1}{\overline{A}}$	$\frac{8}{2}$: $p(\overline{\Delta}) = 1 - \frac{1}{2}$	$\frac{3}{8} - \frac{12}{12} \cdot p(\overline{B}) = 1$	$\frac{1}{1-\frac{14}{1-\frac{11}$	<u> </u>	
	$p(\overline{A} \cap \overline{B}) = \frac{160}{500} = \frac{8}{25}$; $p(\overline{A}) = 1 - \frac{13}{25} = \frac{12}{25}$; $p(\overline{B}) = 1 - \frac{14}{25} = \frac{11}{25}$					
3	$p(\overline{A} \cup \overline{B}) = p(\overline{A}) + p(\overline{B}) - p(\overline{A} \cap \overline{B}) = \frac{12}{25} + \frac{11}{25} - \frac{8}{25} = \frac{3}{5}$			1		
	OR: $p(\overline{A} \cup \overline{B})$	$= p\left(\overline{A \cap B}\right) = 1 - p$	$o(A \cap B) = 1 - \frac{2}{5}$	$=\frac{3}{5}$.		

The table of variations is: $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	QIII	Answer		
$\frac{x}{f'(x)} + \frac{0}{f'(x)} + \frac{0}{f'(x)} + \frac{1}{f'(x)} + $	1		0.5	
2 $f'(x)$ f'		The table of variations is:		
2		$x - \infty$ 0 1 2 $+\infty$		
3 and 5 are in] -1; + ∞ [where the function f is strictly increasing, so f(3) < f(5). 1 1 1 1 1 1 1 1 1 1 1 1 1				
3 so $f(3) < f(5)$. 1 1 1 1 1 1 1 1 1 1 1 1 1	2		1.5	
3 so $f(3) < f(5)$. 1 1 1 1 1 1 1 1 1 1 1 1 1				
4 x'Ox. 1 5 f'(-1) > 0. (f is strictly increasing on] - ∞; 0[). 1 • An equation of the vertical asymptote is : x = 1. • An equation of the oblique asymptote is : y = a x + b; This asymptote passes through the point A(1; 0) so 0=a+b and it passes through the point B(0;-1) so -1 = b, consequently a=1. Hence, an equation of this asymptote is : y = x -1. f(x) = ax + b + c/(x-1). Since y = x - 1 is an asymptote to (C) then f(x) = x - 1 + c/(x-1). (C) passes through the point (0; -2) so -2 = -1 - c therefore c = 1. Thus a = 1, b = -1 and c = 1. f(x) = 2x - 2 has two solutions x = 0 or x = 2	3	•		
• An equation of the vertical asymptote is: x = 1. • An equation of the oblique asymptote is: y = a x + b; This asymptote passes through the point A(1; 0) so 0=a+b and it passes through the point B(0;-1) so -1 = b, consequently a=1. Hence, an equation of this asymptote is: y = x -1. f(x) = ax + b + \frac{c}{x-1}. Since y = x - 1 is an asymptote to (C) then f(x) = x - 1 + \frac{c}{x-1}. (C) passes through the point (0; -2) so -2 = -1 - c therefore c = 1. Thus a = 1, b = -1 and c = 1. f(x) = 2x - 2 has two solutions x = 0 or x = 2	4			
 An equation of the oblique asymptote is: y = a x + b; This asymptote passes through the point A(1; 0) so 0=a+b and it passes through the point B(0;-1) so -1 = b, consequently a=1. Hence, an equation of this asymptote is: y = x -1. f(x) = ax + b + c/(x-1). Since y = x - 1 is an asymptote to (C) then f(x) = x - 1 + c/(x-1). (C) passes through the point (0; -2) so -2 = -1 - c therefore c = 1. Thus a = 1, b = -1 and c = 1. f(x) = 2x - 2 has two solutions x = 0 or x = 2 	5	f'(-1) > 0. (f is strictly increasing on] $-\infty$; 0[).		
This asymptote passes through the point A(1; 0) so 0=a+b and it passes through the point B(0;-1) so -1 = b, consequently a=1. Hence, an equation of this asymptote is: $y = x - 1$. $f(x) = ax + b + \frac{c}{x - 1}$. Since $y = x - 1$ is an asymptote to (C) then $f(x) = x - 1 + \frac{c}{x - 1}$. (C) passes through the point $(0; -2)$ so $-2 = -1 - c$ therefore $c = 1$. Thus $a = 1$, $b = -1$ and $c = 1$. $f(x) = 2x - 2$ has two solutions $x = 0$ or $x = 2$		· · · · · · · · · · · · · · · · · · ·		
$f(x) = ax + b + \frac{c}{x - 1}.$ $Since y = x - 1 \text{ is an asymptote to (C) then } f(x) = x - 1 + \frac{c}{x - 1}.$ $(C) \text{ passes through the point } (0; -2) \text{ so } -2 = -1 - c \text{ therefore } c = 1.$ $Thus a = 1, b = -1 \text{ and } c = 1.$ $f(x) = 2x - 2 \text{ has two solutions } x = 0 \text{ or } x = 2$	6	This asymptote passes through the point $A(1;0)$ so $0=a+b$ and it passes through the point $B(0;-1)$ so $-1=b$, consequently $a=1$.	1.5	
Since $y = x - 1$ is an asymptote to (C) then $f(x) = x - 1 + \frac{c}{x - 1}$. (C) passes through the point $(0; -2)$ so $-2 = -1 - c$ therefore $c = 1$. Thus $a = 1$, $b = -1$ and $c = 1$. $f(x) = 2x - 2$ has two solutions $x = 0$ or $x = 2$				
(C) passes through the point $(0; -2)$ so $-2 = -1 - c$ therefore $c = 1$. Thus $a = 1$, $b = -1$ and $c = 1$. $f(x) = 2x - 2$ has two solutions $x = 0$ or $x = 2$				
Thus $a=1$, $b=-1$ and $c=1$. $f(x) = 2x-2 \text{ has two solutions } x=0 \text{ or } x=2$	7	Since $y = x - 1$ is an asymptote to (C) then $f(x) = x - 1 + \frac{c}{x - 1}$.		
f(x) = 2x - 2 has two solutions $x = 0$ or $x = 2$		(C) passes through the point $(0; -2)$ so $-2 = -1 - c$ therefore $c = 1$.		
8				
	0	I(x) = 2x - 2 has two solutions $x = 0$ or $x = 2$	1.5	
(Could be solved graphically or algebraically).	δ	(Could be solved graphically or algebraically).	1.5	