الاسم:	مسابقة في الرياضيات	عدد المسائل: اربع
، و عدم. الرقم:	المدة ساعتان	ربي: المناسبة المناسب

ملاحظة: يُسمح بإستعمال آلة حاسبة غير قابلة للبرمجة أو إختزان المعلومات أو رسم البيانات. يستطيع المرشح الإجابة بالترتيب الذي يناسبه (دون الالتزام بترتيب المسائل الوارد في المسابقة)

I - (4points).

A – A factory manufactures a certain product.

The table below shows the demand Y of this product, in thousands of units, in terms of X where X is the price of one unit expressed in thousands LL.

Xi	1.5	3	5	8	11
Yi	12	11	10	9	8

- 1) Calculate \overline{X} and \overline{Y} , the means of the two variables X and Y respectively.
- 2) Represent graphically the scatter plot of the points $(X_i; Y_i)$ as well as the center of gravity $G(\overline{X}; \overline{Y})$ in a rectangular system.
- 3) Determine an equation of the regression line ($D_{Y/X}$) and draw it in the preceding system.
- 4) Suppose that the above pattern remains valid as price increases. Find an estimation of the demand corresponding to a unit price equal to 14 500LL.
- **B** The table below shows the supply Z of this product, in thousands of units, in terms of the price X, in thousands LL.

Xi	1.5	3	5	8	11
Z_{i}	6	8	8.5	9	10

The regression line $(d_{Z/X})$, of Z in terms of X, cuts the line $(D_{Y/X})$ at the point L (7.87; 9.1) . Give an economical interpretation of the coordinates of L.

II- (4points)

Zahi deposits a capital $C_0 = 10\,000\,000$ LL in an investment company.

At the end of every year, this company transfers into Zahi's account an interest of 5% together with a supplementary amount of 200 000LL.

Designate by C_n the balance in his account at the end of the nth. year.

- 1) Verify that $C_1 = 10700000LL$.
- 2) Prove that $C_{n+1} = (1.05)C_n + 200\ 000$.
- 3) Consider the sequence (S_n) defined by $S_n = C_n + 4\,000\,000$; $(n \ge 0)$.
 - a- Prove that (S_n) is a geometric sequence of ratio 1.05 and calculate S_o .
 - b- Write S_n in terms of n, and deduce C_n in terms of n.
 - c- Find the number of years needed for the balance in Zahi's account, in this company, to exceed 17 000 000 LL for the first time?

III - (4points)

In a library, two boxes A and B contain 200 calculators (graphic or non-graphic).

The box A contains calculators manufactured in the year 2004, and the box B contains calculators manufactured in 2000.

These calculators are distributed as shown in the table below:

Type	graphic	non- graphic
Box		
A	50	40
В	30	80

A customer chooses randomly one calculator from each box.

1) Consider the events:

E: « the customer chooses two graphic calculators ».

F: « the customer chooses one graphic calculator and another non-graphic one ».

Prove that the probability P(E) is equal to $\frac{5}{33}$ and calculate P(F) .

2) The prices of the calculators are given in the following table:

Type	graphic	non-graphic
Box		
A	120 000 LL	36 000 LL
В	100 000 LL	30 000 LL

Designate by X the random variable equal to the sum of prices paid by this customer for the two calculators chosen.

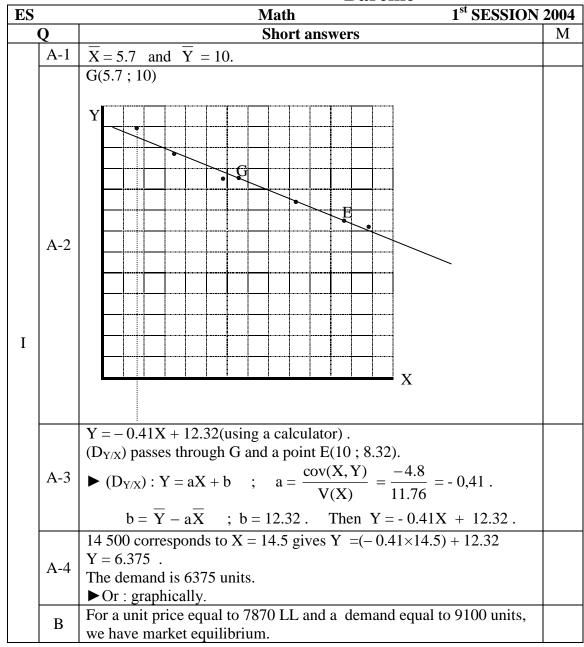
- a- Find the four values of X.
- b- Determine the probability distribution of X.

IV - (Spoints).

A- Consider the function
$$f$$
 defined , on $\left]\frac{1}{e}; +\infty\right[$, by $f(x)=\frac{4}{1+\ln x}$.

(C) is the representative curve of f in an orthonormal system (O; \vec{i} , \vec{j}).

1) Calculate
$$\lim_{x \to +\infty} f(x)$$
 and $\lim_{x \to \frac{1}{2}} f(x)$. Deduce the asymptotes of (C).


- 2) Verify that f'(x) < 0 and set up the table of variations of f.
- 3) Calculate f(1) and give the values of f(2) and f(3) correct to two decimal places.
- 4) Write an equation of the line (d) tangent to (C) at the point of abscissa 1.
- 5) Draw (d) and (C).

B – A company produces batteries having a unit price p expressed in thousands LL; $(0.5 \le p \le 8)$.

The demand f(p) of this product, expressed in thousands of units, is given by $f(p) = \frac{4}{1 + \ln p}$.

- 1) Calculate the number of demanded batteries for a unit price of 1000 LL.
- 2) a- Find the elasticity E(p) of the demand in terms of the price.
 - b- Calculate E(3); give an economical interpretation for the value thus obtained. Is f elastic for p = 3?

Barème

	1	$C_1 = C_0(1 + 0.05) + 200\ 000 = 10\ 700\ 000\ LL.$	
	2	$C_{n+1} = C_n(1 + 0.05) + 200\ 000 = 1.05C_n + 200\ 000.$	
		$S_{n+1} = C_{n+1} + 4\ 000\ 000 = 1.05\ C_n + 4\ 200\ 000.$	
	3-a	$= 1.05(C_n + 4\ 000\ 000\) = 1.05\ S_n$	
	3-a	Then (S_n) is a gemeotric sequence of common ration $r = 1.05$.	
		$S_o = C_o + 4000000 = 14000000$.	
II	3-b	$S_n = S_o \times r^n = 14\ 000\ 000\ (1.05)^n$.	
		$C_n = S_n - 4\ 000\ 000 = 14\ 000\ 000(1.05)^n - 4\ 000\ 000\ .$	
		$C = 17,000,000 \text{ then } (1.05)^{\text{n}} = 21,000,000$	
		$C_n > 17\ 000\ 000\ \text{then}\ (1.05)^n > \frac{21\ 000\ 000}{14\ 000\ 000}\ ;\ (1.05)^n > 1.5$	
	3-с	$n \times ln(1.05) > ln(1.5)$ with $ln(1,05) > 0$, $n > 8.31$	
		Therefore after 9 years the balance in Zahi's account exceeds	
		1	
		17 000 000 LL for the first time.	

III 1
$$P(E) = \frac{50}{50+40} \times \frac{30}{30+80} = \frac{15}{99} = \frac{5}{33}$$
.

	$P(F) = \frac{1}{5}$	$\frac{50}{0+40} \times \frac{80}{30+80}$	$\frac{30}{0} + \frac{30}{30 + 80} \times$	$\frac{40}{50+40} = \frac{52}{99}$			
2-a	The four values of X are: 66000, 136000, 150000 and 220000.						
2.1	Xi	66000	136000	150000	220000		
2-b	Pi	$\frac{4}{9} \times \frac{8}{11} = \frac{32}{99}$	$\frac{3}{11} \times \frac{4}{9} = \frac{12}{99}$	$\frac{5}{9} \times \frac{8}{11} = \frac{40}{99}$	$\frac{5}{9} \times \frac{3}{11} = \frac{15}{99}$		

		$\lim_{x\to +\infty} f(x) = 0$; the line of equation $y = 0$ is an asymptote of (C).	
	A-1	$\lim_{x \to \frac{1}{e}} f(x) = +\infty \text{ ; the line of equation } x = \frac{1}{e} \text{ is an asymptote of (C)}.$	
	A-2	$f'(x) = \frac{-4}{x(1 + \ln x)^2};$ $f'(x) < 0 \text{ over its domain.} \qquad \frac{x}{f'(x)} \qquad \frac{+\infty}{f(x)}$	
	A-3 A-4	f(1)=4; $f(2)=2.36$ and $f(3)=1.90$. (d): $y-f(1)=f'(1)(x-1)$; $y=-4x+8$.	
	A-4	(u) $y - 1(1) = 1$ (1)(x - 1), $y = -4x + 8$.	
IV			

| Price = 1 000 LL if p = 1.
| B-1 | f(1) =
$$\frac{4}{1 + \ln 1}$$
 = 4;
| the number of batteries is 4 000.
| IV | B-2 | a | e(p) = $-p \frac{f'(p)}{f(p)} = \frac{1}{1 + \ln p}$.
| B-2 | b | e(3) = $\frac{1}{1 + \ln 3}$ = 0.47.
| An increase of 1 % in the price, when the unit price is 3 000 LL will

cause a decrease of 0.47	% in demand.	
f is inelastic for $p = 3$.	Since $0 < E(3) < 1$.	