الدورة الإستثنائية للعام 2009	امتحانات الشهادة الثانوية العامة الفرع : علوم عامة	وزارة التربية والتعليم العالي المديرية العامة للتربية
		دائرة الامتحانات
الاسم: الرقم:	مسابقة في مادة الرياضيات المدة أربع ساعات	عدد المسائل: ست

ارشادات عامة :- يسمح باستعمال آلة حاسبة غير قابلة للبرمجة او اختزان المعلومات او رسم البيانات0 - يستطيع المرشح الإجابة بالترتيب الذي يناسبه (دون الالقزام بترتيب المسائل الوارد في المسابقة) 0

I- (2 points)

In the table below, only one of the proposed answers to each question is correct. Write down the number of each question and give, with justification, the answer corresponding to it.

N°	Questions		Answers		
		a	b	С	
1	Let f be the function defined over IR $-\{0\}$ by $f(x) = \frac{1}{x}$ and let g be the function defined over IR $-\{1\}$ by $g(x) = \frac{x}{x-1}$. The domain of definition of $g \circ f$ is:	IR - {0}	IR - {1}	IR - {0;1}	
2		p ∧(¬ q)	(¬p) ∧ (¬q)	$(q p) \Rightarrow (q p)$	
3	A, M and N are three distinct points of respective affixes i, z_1 and z_2 . If $z_2 = iz_1 + 1 + i$, then, triangle AMN is:	equilateral	semi- equilateral	right isosceles	
4	With 10 distinct points situated on a circle, we can determine:	720 triangles	120 triangles	150 triangles	
5	The function f defined over $]0;1]$ by $f(x) = \sqrt{\frac{1-x}{x}}$ has an inverse function g defined by :	$g(x) = \sqrt{\frac{x}{1-x}}$	$g(x) = \frac{1}{x^2 - 1}$	$g(x) = \frac{1}{x^2 + 1}$	
6	If $z = -2\left(\sin\left(\frac{\pi}{3}\right) + i\cos\left(\frac{\pi}{3}\right)\right)$, then $\arg\left(\bar{z}\right) =$	$-\frac{\pi}{6}$	$\frac{5\pi}{6}$	$\frac{7\pi}{6}$	

II- (2 points)

The space is referred to a direct orthonormal system $(O; \vec{i}, \vec{j}, \vec{k})$.

Consider the point A(-1; 1; 0), the plane (P) of equation x - 2y + 2z - 6 = 0 and the straight line (D) defined by the system x = 2m - 3; y = 3m - 2; z = 2m - 2 (m is a real parameter).

- 1) a- Verify that A does not belong to (P) and calculate the distance from A to (P).
 - b- Prove that (D) passes through A and is parallel to (P).
- 2) a- Determine a system of parametric equations of the straight line (d) passing through A and perpendicular to (P).
 - b- Determine the coordinates of B, the point of intersection of (d) and (P).
 - c- Determine a system of parametric equations of the straight line (Δ_0) passing through B and parallel to (D) and prove that (Δ_0) lies in (P).
- 3) Let (Δ) be a straight line, other than (Δ_0) , passing through B and lying in (P).
 - a- Prove that (Δ) and (D) are skew (not coplanar).
 - b- Prove that (AB) is perpendicular to (Δ) and to (D).

III- (3 points)

In an oriented plane, consider the rectangle ABCD such that:

$$(\overrightarrow{AB}; \overrightarrow{AD}) = \frac{\pi}{2} (\text{mod } 2\pi)$$
, $AB = 4$ and $AD = 3$.

Let H be the orthogonal projection of A on (BD) and h be the dilation, of center H, that transforms D to B.

- 1) a- Determine the image of the straight line (AD) by h.
 - b- Deduce the image E of point A by h. Plot E.
 - c- Construct the point F image of B by h and the point G image of C by h, then determine the image of rectangle ABCD by h.
- 2) Let S be the direct similar transforms A onto B and D onto A.
 - a- Determine an angle of S.
 - b- Determine the image of the straight line (AH) by S and the image of the straight line (BD) by S.
 - c- Deduce that H is the center of S.
- 3) Show that S(B) = E and deduce that $S \circ S(A) = h(A)$.
- 4) Show that $S \circ S = h$.

IV- (3 points)

An urn contains three white balls and two black balls.

A player draws **randomly** and **successively** three balls from this urn, respecting the following rule: In each draw: if the drawn ball is black, he replaces it back in the urn;

if it is white, he doesn't replace it back in the urn.

- 1) a- Calculate the probability of drawing, in the following order: one black ball, one black ball then one white ball.
 - b- Show that the probability of obtaining one white ball only, among the three drawn balls, is equal to $\frac{183}{500}$.
- 2) Among the three drawn balls, the player marks three points for each white ball drawn and two points for each black ball drawn.

Designate by X the random variable equal to the sum of points marked for the three drawn balls.

- a- Show that the possible values of X are: 6, 7, 8 and 9.
- b- Determine the probability distribution of X and calculate its expected value.
- 3) The player now draws **randomly** and **successively** n balls from the urn (n > 3) respecting the same rule.
 - a- Calculate, in terms of n, the probability of the event: "the player draws n black balls".
 - b- Calculate, in terms of n, the probability $P_{n}\,$ of the event:

"the player obtains at least one white ball".

c- What is the minimum number of balls to be drawn by the player so that $P_n \ge 0.99$?

V- (3 points)

In a plane, given two parallel straight lines (d) and (Δ) at a distance from each other equal to 5 cm and a point A situated between (d) and (Δ) at a distance of 3 cm from (Δ).

M is a variable point in the plane and H is its orthogonal projection on (Δ) .

1) Show that if MA + MH = 5 cm, then M moves on a parabola (S) of focus A.

In what follows, the plane is referred to a direct orthonormal system (O; \vec{i} , \vec{j}) such that A(1; 0).

- 2) a- Prove that $y^2 = 4x$ is an equation of the parabola (S). b- Draw (S).
- 3) Let E be a point on (S) of **ordinate** a such that $a \neq 0$. Show that $4x - 2ay + a^2 = 0$ is an equation of the tangent (d_1) to (S) at E.

- a- Prove that ab = -16.
- b- The tangent (d_2) to (S) at G cuts (d_1) at a point L. Prove that, as E and G vary on (S) such that $E\widehat{O}G = 90^\circ$, the point L moves on a straight line to be determined.

VI- (7 points)

A-

Consider the function f defined on IR by $f(x) = e^{2x} - 4e^{x} + 3$.

Designate by (C) its representative curve in an orthonormal system (O; i, j).

- 1) a- Determine $\lim_{x\to -\infty} f(x)$, $\lim_{x\to +\infty} f(x)$ and $\lim_{x\to +\infty} \frac{f(x)}{x}$.
 - b- Solve the equation f(x) = 0.
- 2) Calculate f'(x) and set up the table of variations of f.
- 3) Show that O is a point of inflection of (C).
- 4) Write an equation of the tangent (T) at O to (C).
- 5) Let h be the function defined on IR by h(x) = f(x) + 2x.
 - a- Show that $h'(x) \ge 0$ for every real number x.
 - b- Deduce, according to the values of x, the relative positions of (C) and (T).
- 6) Draw (T) and (C).
- 7) Calculate the area of the region bounded by (C), the axis of abscissas and the two lines of equations x = 0 and $x = \ln 3$.
- 8) a- Show that f has, on $[\ln 2; +\infty[$, an inverse function f^{-1} .
 - b- Show that the equation $f(x) = f^{-1}(x)$ has a unique solution α and verify that $1.2 < \alpha < 1.3$.

B-

Let g be the function given by $g(x) = \ln[f(x)]$.

Designate by (Γ) its representative curve in an orthonormal system.

- 1) Justify that the domain of definition of g is $]-\infty;0[\cup]\ln 3;+\infty[$.
- 2) Determine $\lim_{x\to -\infty} g(x)$. Deduce an asymptote (D) of (Γ) .
- 3) Show that the line (d) of equation y = 2x is asymptote to (Γ) at $+\infty$.
- 4) Determine the coordinates of the points of intersection of (Γ) with (d) and (D).
- 5) Set up the table of variations of g.
- 6) Draw (Γ) .

الدورة الإستثنائية للعام 2009	امتحانات الشهادة الثانوية العامة الفرع : علوم عامة	وزارة التربية والتعليم العالي المديرية العامة للتربية دائرة الامتحانات
	مسابقة في مادة الرياضيات	مشروع معيار التصحيح

QI	Answer		M
1	$x \in IR - \{0\}$ and $f(x) \neq 1$, so the domain of $g \circ f$ is $IR - \{0;1\}$.	(c)	0.5
2	$p \Rightarrow q \text{ is } \neg p \lor q \text{ then } \neg (p \Rightarrow q) \text{ is equivalent to } p \land (\neg q).$	(a)	0.5
3	$\frac{z_{\overrightarrow{AN}}}{z_{\overrightarrow{AM}}} = \frac{z_2 - i}{z_1 - i} = \frac{iz_1 + 1 + i - i}{z_1 - i} = \frac{i\left(z_1 - i\right)}{z_1 - i} = i$ So $AM = AN$ and $\left(\overrightarrow{AM}; \overrightarrow{AN}\right) = \frac{\pi}{2}(2\pi)$, the triangle AMN is right isosceles at A.	(c)	1
4	With 10 distinct points situated on a circle, we can determine $C_{10}^3 = 120$ triangles	(b)	0.5
5	$y = \sqrt{\frac{1-x}{x}}$ gives $y^2 = \frac{1-x}{x}$ then $x = \frac{1}{y^2 + 1}$, hence $g(x) = \frac{1}{x^2 + 1}$.	(c)	1
6	$\overline{z} = -2\left(\sin\left(\frac{\pi}{3}\right) - i\cos\left(\frac{\pi}{3}\right)\right) = 2\left(-\frac{\sqrt{3}}{2} + \frac{1}{2}i\right), \arg(\overline{z}) = \frac{5\pi}{6}.$	(b)	0.5

QII	Answer	M
1a	$-1-2-6=-9 \neq 0$, A does not belong to (P) ; $d(A;(P))=3$.	0.5
	A is the point of (D) corresponding to $m=1$; (D) \cap (P) = ϕ	
1b	OR $\vec{n}(1; -2; 2) \perp (P)$, $\vec{u}(2; 3; 2) //(D)$ and $\vec{n} \cdot \vec{u} = 0$.	0.5
2a	$\vec{n}(1;-2;2)$ is a direction vector of (d) ; (d) : $x = t - 1$; $y = -2t + 1$; $z = 2t$.	0.5
2b	$(d) \cap (P) = \{B(0; -1; 2)\}.$	0.5
	$\overrightarrow{u}(2;3;2)$ is a direction vector of (Δ_0) ; (Δ_0) : $x=2\lambda$; $y=3\lambda-1$; $z=2\lambda+2$.	
	(D) is parallel to (P) and (Δ_0) passes through the point B of (P) and is parallel to (D);	
2c	hence, (Δ_0) lies in (P) .	0.5
	(Δ) is not parallel to (D) since	
	(Δ_0) is parallel to (D)	
	and $(\Delta) \neq (\Delta_0)$.	
3a	(Δ) and (D) do not intersect	1
	since (D) is parallel to (P) and (Δ)	
	is a straight line in (P) .	
	Hence (Δ) and (D) are not coplanar.	
3b	(AB) is perpendicular to (P) at B ; then (AB) is perpendicular to (Δ) and to (Δ_0) at B .	0.5
	But (Δ_0) is parallel to (D) ; hence (AB) is perpendicular to (D) at A and to (Δ) at B .	0.5

QIII	Answer	M
1a	h(D) = B, so the image of (AD) is the line passing in B and parallel to (AD) , so $h(AD) = (BC)$.	0.5
	1 (Ap)	

1b	$E \in (AH)$ and $A \in (AD)$, then $E \in (BC)$, thus $\{E\} = (AH) \cap (BC)$.	0.5
1c	$F \in (BH)$. $B \in (AB)$, so $F \in (d)$ passing through E and parallel to (AB) , so $\{F\} = (BH) \cap (d)$. G is the intersection of (HC) and the parallel through B to (DC). The image of rectangle $ABCD$ by h is the rectangle $EFGB$.	1
2a	$\alpha = (\overrightarrow{AD}; \overrightarrow{BA}) = \frac{\pi}{2}(2\pi)$	0.5
2b	S(A) = B, so the image of (AH) is line passing through B and perpendicular to (AH) , so it is (BD) . $S(D) = A$, so the image of (BD) is line passing through A and perpendicular to (BD) , so it is (AH) .	1.5
2c	$\{H\} = (AH) \cap (BD)$, so $\{S(H)\} = (BD) \cap (AH)$, thus $S(H) = H$ so H is the center of S.	0.5
3	$B \in (BD)$, so $S(B) \in (AH)$ and $S(AB) = (BC)$ thus $S(B) = E$ intersection of the two lines (AH) and (BC) . $S \circ S(A) = S(S(A)) = S(B) = E = h(A)$.	1
4	SoS is a similitude of center H and angle π , thus SoS is a negative homothecy. Since $S \circ S(A) = h(A)$, then $SoS = h$.	0.5

QIV	Answer	M
1a	$P_r(BBW) = \left(\frac{2}{5}\right)^2 \times \frac{3}{5} = \frac{12}{125}.$	0.5
1b	$ P_r(BBW) + P_r(BWB) + P_r(BBW) = \frac{3}{5} \times \left(\frac{2}{4}\right)^2 + \left(\frac{2}{5} \times \frac{3}{5} \times \frac{2}{4}\right) + \left(\frac{2}{5}\right)^2 \times \frac{3}{5} = \frac{75 + 60 + 48}{500} = \frac{183}{500} \ . $	1
2a	In three draws the possible outcomes are 3 black, or 1 white and 2 black, or 2W and 1B, or 3W; Thus the possible values of X are: 6;7;8 and 9.	0.5
	$P_r(X=6) = P_r(0 \text{ white balls}) = P_r(BBB) = \left(\frac{2}{5}\right)^3 = \frac{8}{125}$	
	$P_r(X=7)=P_r(1 \text{ white ball})=\frac{183}{500}$;	
2b	$ P_r(X=8) = P_r(2W) = P_r(WWB) + P_r(WBW) + P_r(BWW) = \frac{3}{5} \times \frac{2}{4} \times \frac{2}{3} + \frac{3}{5} \times \left(\frac{2}{4}\right)^2 + \frac{2}{5} \times \frac{3}{5} \times \frac{2}{4} = \frac{235}{500} $	2
	$P_r(X=9)=P_r(3\text{ white balls})=\frac{3}{5}\times\frac{2}{4}\times\frac{1}{3}=\frac{1}{10}$	
	$E(X) = \frac{6 \times 32 + 7 \times 183 + 8 \times 235 + 9 \times 50}{500} = 7.606$	

3a	$P_r(n \text{ black balls in the n draws}) = \left(\frac{2}{5}\right)^n$	0.5
3b	$P_r(\text{at least a white ball})=1-\left(\frac{2}{5}\right)^n=P_n$	1
3c	$P_{n} \ge 0.99 \Leftrightarrow 1 - \left(\frac{2}{5}\right)^{n} \ge 0.99 \Leftrightarrow \left(\frac{2}{5}\right)^{n} \le 0.01 \Leftrightarrow n \ge \frac{\ln(0.01)}{\ln(0.4)} \Leftrightarrow n \ge 5.026$ Hence, the minimum number of balls is 6.	0.5

QV	Answer	M
1	(MH) is perpendicular to (d) at K and $MA + MH = MK + MH = 5$ then $MA = MK = d(M, (d))$. Then M moves on a parabola (S) of focus A and directrix (d).	1
2a	$A(1;0)$ and $(d): x = -1$ then $(S): y^2 = 4x$, since the origin is the vertex and $p = 2$	1
2b		0.5
3	2yy'=4; $y' = \frac{2}{y}$; Equation of (d ₁): $y - a = \frac{2}{a} \left(x - \frac{a^2}{4} \right)$; then (d_1) : $4x - 2ay + a^2 = 0$.	1
4a	$E(\frac{a^2}{4}; a)$ and $G(\frac{b^2}{4}; b)$. $\overrightarrow{OE} \cdot \overrightarrow{OG} = 0$ gives $ab = -16$.	1
4b	$(d_2): 4x - 2by + b^2 = 0. \text{ So } (d_1) \cap (d_2) = \left\{ L(-4; \frac{a+b}{2}) \right\}.$ When E and G vary on (S), y_L describes IR and L moves on the line of equation $x = -4$.	1.5

VI	Answer	M
A1a	$\lim_{x \to -\infty} f(x) = 3, \lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \left[e^x \left(e^x - 4 \right) + 3 \right] = +\infty \lim_{x \to +\infty} \frac{f(x)}{x} = \lim_{x \to +\infty} \left[\frac{e^x}{x} \left(e^x - 4 \right) + \frac{3}{x} \right] = +\infty.$	1
A1b	$f(x) = 0$, $e^x = 1$ or $e^x = 3$; $x = 0$ or $x = \ln 3$	0.5
A2	$f'(x) = 2e^{x} (e^{x} - 2)$ $\frac{x - \infty \ln 2 + \infty}{f'(x) - 0 + 1}$ $f(x)$ 3 -1	1
A3	$f''(x) = 4e^x(e^x - 1), \ f''(x) > 0 \text{ for } x > 0, \ f''(x) < 0 \text{ for } x < 0$ and $f''(x) = 0 \text{ for } x = 0,$ $f(0) = 0$, thus O is a point of inflection of (C).	1

A4	y-0=f'(0)(x-0) and $f'(0)=-2$ then $y=-2x$.	0.5
A5a	$h'(x) = f'(x) + 2 = 2(e^x - 1)^2$; then $h'(x) \ge 0$, for every x.	1
A5b	h(x) = f(x) - (-2x), h is strictly increasing and $h(0) = 0$ then for $x > 0$, $h(x) > 0$ so (C) is	1
AJU	above (T) and for $x < 0$, $h(x) < 0$ so (C) is below (T) . (C) and (T) intersect at point (C) .	1
A6	The line of equation $y = 3$ is asymptote at $-\infty$. y'y is an asymptotic direction at $+\infty$.	1.5
A7	$S = \int_{0}^{\ln 3} -f(x)dx = \left[-\frac{1}{2}e^{2x} + 4e^{x} - 3x \right]_{0}^{\ln 3} = (4 - 3\ln 3) \text{ units of area.}$	1
A8a	f is continuous and strictly increasing on $[\ln 2; +\infty[$, so it has an inverse function f^{-1} .	0.5
A8b	The curves of the functions f and f^{-1} intersect on the line with equation $y = x$. The line of equation $y = x$ cuts (C) at one point only of abscissa α . Let $\psi(x) = f(x) - x$, $\psi(1.2) \approx -0.4$, $\psi(1.3) \approx 0.4$ then $\alpha \in]1.2;1.3[$.	1
B1	$f(x) > 0$ for $x < 0$ or $x > \ln 3$, so the domain of definition of g is $]-\infty;0[\cup]\ln 3;+\infty[$.	0.5
B2	$\lim_{x\to\infty} g(x) = \ln 3$ thus the line of equation y = ln3 is a horizontal asymptote of (Γ) .	0.5
В3	$\lim_{x \to +\infty} g(x) - 2x = \lim_{x \to +\infty} \ln(e^{2x} - 4e^x + 3) - \ln e^{2x} = \lim_{x \to +\infty} \ln(1 - 4e^{-x} + 3e^{-2x}) = 0.$	0.5
B4	$g(x) = \ln 3$ gives $e^{2x} - 4e^x = 0$, so $e^x = 4 \text{ then } x = \ln 4$, $I(\ln 4; \ln 3)$. $g(x) = 2x$ gives $-4e^x + 3 = 0$ then $J\left(\ln \frac{3}{4}; 2\ln \frac{3}{4}\right)$.	0.5
В5	$\frac{x}{g'(x)} - \frac{1}{x} + \infty$ $g(x) \ln 3 - \infty$	1
В6	$\frac{2}{4}$ $\frac{1}{2}$ $\frac{x}{2}$	1