#### الدورة الإستثنائية للعام 2009

## امتحانات الشهادة الثانوية العامة الفرع: آداب و إنسانيات

وزارة التربية والتعليم العالي المديرية العامة للتربية دائرة الامتحانات

| N*1     |                          | * NI# 1:1 11     |
|---------|--------------------------|------------------|
| الاسم:  | مسابقة في مادة الرياضيات | عدد المسائل:ثلاث |
| 7)      |                          | 0                |
| اأ، قم، | المدة ساعة               |                  |
| الرقم:  | المده ساعه               |                  |
|         |                          |                  |

ارشادات عامة :- يسمح باستعمال آلة حاسبة غير قابلة للبرمجة او اختزان المعلومات او رسم البيانات0 - يستطيع المرشح الإجابة بالترتيب الذي يناسبه (دون الالقرام بترتيب المسائل الوارد في المسابقة)0

### I- (5 points)

In a perfume shop, the sum of the initial prices of a perfume bottle and of a lotion tube is 100 000 LL.

The perfume shop announces the following offer:

- « Buy a box containing both a perfume bottle and a lotion tube and get a discount of 10% on the price of the perfume and a discount of 15% on the price of the lotion ». The price of a box becomes 88 000 LL.
  - 1) What is the initial price of a perfume bottle and that of a lotion tube?
  - 2) A customer bought 75 boxes and received a supplementary discount of 5% on the price of a box. What amount must he pay?

## II- (5 points)

A box contains 60 tokens distributed as shown in the following table:

|       | Blue | Green |
|-------|------|-------|
| Large | 15   | 10    |
| Small | 17   | 18    |

- 1) A token is drawn randomly from this box.
  - a- What is the probability that it is small?
  - b- What is the probability that it is small and blue?
  - c- Knowing that the chosen token is small, what is the probability that it is blue?
- 2) Two tokens are drawn randomly and successively without replacement from this box. What is the probability of drawing 2 small tokens?

# III- (10 points)

The curve (C) shown below is the representative curve, in an orthonormal system, of a function f that is defined on  $]-\infty;2[\cup]2;+\infty[$ .



- 1) Determine f'(1), f'(3) and solve f'(x) < 0.
- 2) Solve  $f(x) \ge 4$ .
- 3) Solve f(x) < 1.
- 4) Find  $\lim_{\substack{x \to 2 \\ x > 2}} f(x)$  and  $\lim_{\substack{x \to 2 \\ x < 2}} f(x)$ .
- 5) Find  $\lim_{x \to -\infty} f(x)$  and  $\lim_{x \to +\infty} f(x)$ .
- 6) Determine an equation of each of the lines (d) and (D).
- 7) Set up the table of variations of f.
- 8) In all what follows take  $f(x) = \frac{ax^2 + bx 1}{x 2}$ , where a and b are real numbers.
  - a- Calculate a and b.
  - b- Verify that  $f(x) = x + 1 + \frac{1}{x 2}$  and deduce that the line of equation y = x + 1 is an asymptote to (C).

مسابقة في مادة الرياضيات

| التصحيح | معيار | وع | مشر      |
|---------|-------|----|----------|
|         | 7     |    | <i>j</i> |

| QI | Answer                                                                                       | Mark |
|----|----------------------------------------------------------------------------------------------|------|
|    | Let x be the initial price of a bottle of perfume and y that of a lotion tube,               |      |
|    | then: $x + y = 100\ 000$ and                                                                 |      |
| 1  | $x(1 - \frac{10}{100}) + y(1 - \frac{15}{100}) = 88\ 000;\ 0.9x + 0.85y = 88\ 000$           | 3    |
|    | Using a calculator: $x = 60\ 000LL$ and $y = 40\ 000LL$ .                                    |      |
|    | The price of a box is 88 000LL.                                                              |      |
| 2  | The customer must pay : $[88\ 000 \times (1 - \frac{5}{100})] \times 75 = 6\ 270\ 000\ LL$ . | 2    |

| QII | Answer                                                                                                  | Mark |
|-----|---------------------------------------------------------------------------------------------------------|------|
| 1a  | From the table, the probability of drawing a small token is $\frac{35}{60}$ .                           | 1    |
| 1b  | ty of obtaining a small blue token is $\frac{17}{60}$ .                                                 | 1    |
| 1c  | Knowing that the chosen token is small, the probability that it is blue is $\frac{17}{35}$ .            | 1    |
| 2   | The probability of obtaining two small tokens is $\frac{35}{60} \times \frac{34}{59} = \frac{119}{354}$ | 2    |

| Q<br>III | Answer                                                                                                                                                                                                                                                                                                             | Mark |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 1        | $f'(1) = 0$ , $f'(3) = 0$ $f'(x) < 0$ for $x \in ]1;2[\cup]2;3[$                                                                                                                                                                                                                                                   | 1    |
| 2        | $f(x) \ge 4$ for $x \in ]2; +\infty[$                                                                                                                                                                                                                                                                              | 1    |
| 3        | $f(x) < 1 \text{ for } x \in ]-\infty; 1[\cup]1; 2[$                                                                                                                                                                                                                                                               | 1    |
| 4        | $\lim_{\substack{x \to 2 \\ x > 2}} f(x) = +\infty,  \lim_{\substack{x \to 2 \\ x < 2}} f(x) = -\infty.$                                                                                                                                                                                                           | 1    |
| 5        | $\lim_{x \to -\infty} f(x) = -\infty ,  \lim_{x \to +\infty} f(x) = +\infty .$                                                                                                                                                                                                                                     | 1    |
| 6        | (d): $x = 2$ ; (D) passes through A(-1, 0) and B(0, 1) so : (D): $y = x+1$ .                                                                                                                                                                                                                                       | 1    |
| 7        | $f'(x) = \begin{pmatrix} x & -\infty & 1 & 2 & 3 & +\infty \\ f'(x) & + & 0 & - & - & 0 & + \\ f(x) & -\infty & & -\infty & & 5 \end{pmatrix}$                                                                                                                                                                     | 1.5  |
| 8a       | f(1)=1 gives $a+b=0$ and $f(3)=5$ gives $9a+3b=6$ then: $a=1$ , $b=-1$                                                                                                                                                                                                                                             | 1    |
| 8b       | $f(x) = x + 1 + \frac{1}{x - 2} = \frac{x^2 - x - 1}{x - 2}  ;  \lim_{x \to +\infty} (f(x) - (x + 1)) = \lim_{x \to +\infty} \frac{1}{x - 2} = 0$ $\lim_{x \to -\infty} (f(x) - (x + 1)) = \lim_{x \to -\infty} \frac{1}{x - 2} = 0 \text{ .Hence the line of equation } y = x + 1 \text{ is an asymptote of (C)}$ | 1.5  |