امتحانات الشهادة الثانوية العامة فرع: الآداب والانسانيات

وزارة التربية والتعليم العالم المديرية العامة للتربية دائرة الامتحانات الرسميّة

عدد المسائل: ثلاث مسابقة في مادة الرياضيات الاسم: المدة: ساعة الرقم:

ملاحظة: - يسمح باستعمال آلة حاسبة غير قابلة للبرمجة او اختزان المعلومات او رسم البيانات.

- يستطيع المرشّح الإجابة بالترتيب الذي يناسبه (دون الالتزام بترتيب المسائل الواردة في المسابقة).

I- (5 points)

- 1) Solve the following system : $\begin{cases} 2x + y = 80 \\ 1.7x + 2.7y = 105 \end{cases}$
- 2) The price of two shirts and one belt is 80 thousands LL.

 After a discount of 15% on the price of one shirt and a discount of 10% on the price of a belt, the price of two shirts and three belts becomes 105 thousands LL.
 - a- Show that this text is modeled by the system given in the 1st question.
 - b- Find the original price of one shirt and the original price of a belt.
 - c- Nadim bought four shirts and three belts after the discount. How much did he pay ?

II- (5 points)

The following table represents the number of boys and girls, in the LH and SE sections in a certain secondary school:

	LH	SE	Total
Boys	X		
Girls		y	26
Total	20		

The number of boys in SE section is twice that of boys in LH.

The number of girls in LH is 4 more than the number of boys in this section.

1) Determine x and y.

In what follows suppose that: x = 8 and y = 14.

- 2) Copy and complete the table above.
- 3) One student is randomly selected from these two sections.
 - a- Calculate the probability that this student is a boy in LH section.
 - b- Knowing that the student is a boy, calculate the probability that he is in SE section.
 - c- Calculate the probability that the student is a girl or in LH section.

III- (10 points)

Let f be the function defined on $]-\infty;1[\,\cup\,]1;+\infty[$ as $f(x)=-x+2-\frac{1}{x-1}$.

- (C) is the graph of f in an orthonormal system.
- 1) Determine $\lim_{\substack{x\to 1\\x<l}}f(x)$ and $\lim_{\substack{x\to 1\\x>l}}f(x)$ and deduce an asymptote $\left(\Delta\right)$ to (C).
- 2) Determine $\lim_{x\to -\infty} f(x)$ and $\lim_{x\to +\infty} f(x)$.
- 3) Show that the line (d) with equation y = -x + 2 is an asymptote to (C).
- 4) Determine the coordinates of point I the intersection of the asymptotes of (C).
- 5) Show that $f'(x) = \frac{x(2-x)}{(x-1)^2}$ and set up the table of variations of f.
- 6) Draw (Δ) , (d) and (C).
- 7) a- Prove that y = -2x + 3 is an equation of the line passing through I and joining the two vertices of (C).
 - b- Solve the inequality: f(x) < -2x + 3.

مسابقة في مادة الرياضيات المدة: ساعة

مشروع معيار التصحيح

QI	Answers		
1	x = 30 and $y = 20$		
2a	Let x be the price of a shirt and y the price of a belt.	1.5	
Za	x and y verify the system	1.5	
2b	The price of a shirt is 30 000 LL and the price of a belt is 20 000 LL		
2c	$4(30\ 000 \times 0.85) + 3(20\ 000 \times 0.9) = 156\ 000$		
	Nadim should pay 156 000 LL	1 1	

QII	Answers				M		
1	x + x + 4 = 20 and $x + 4 + y = 26$; Hence $x = 8$ and $y = 14$.			1			
			Hum	Eco	Total		
2		Boys	8	16	24		1
2		Girls	12	14	26		
		Total	20	30	50		
3a	3a $P(B \cap H) = \frac{8}{50} = \frac{4}{25}$.			1			
3b	$P(E/B) = \frac{16}{24} = \frac{2}{3}.$				1		
3c	$P(G \cup H) = P(G) + P(H) - P(G \cap H) = \frac{26}{50} + \frac{20}{50} - \frac{12}{50} = \frac{17}{25}.$				1		

QIII	Answers		
1	$\lim_{\substack{x \to 1 \\ x < l}} f(x) = +\infty \text{ and } \lim_{\substack{x \to 1 \\ x > l}} f(x) = -\infty. \text{ The line with equation } x = 1 \text{ is an asymptote to (C)}.$		
2	$\lim_{x \to -\infty} f(x) = +\infty \text{ and } \lim_{x \to +\infty} f(x) = -\infty.$		
Jim ₃→±∘	$\lim_{x \to -\infty} \left(f(x) - (-x+2) \right) = \lim_{x \to -\infty} \frac{-1}{x-1} = 0 \text{ and } \lim_{x \to +\infty} \left(f(x) - (-x+2) \right) = 0. \text{ The line with equation } y = -x+2 \text{ is an asymptote to (C).}$		
4	For $x = 1$, $y = 1$; then $I(1; 1)$.		
5	$f'(x) = -1 + \frac{1}{(x-1)^2} = \frac{-x^2 + 2x - 1 + 1}{(x-1)^2} = \frac{x(2-x)}{(x-1)^2}.$ $\frac{x - oo 0 1 2 + oo}{f'(x) - 0 + $	1.5	

(6	5- 5- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1	2
	a	The points with coordinates $(1; 1)$, $(0; 3)$ and $(2; -1)$ belong to line $y = -2x + 3$.	1
7	b	f(x) < -2x + 3; that is (C) is below line $y = -2x + 3$: so $x \in]-\infty; 0[\cup]1,2[$	1