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I- (4 points)

In the space referred to a direct orthonormal system (O; i,

1 1

B(-2;2;1), | [E;—E;lj and the line (d) defined by: <y =—t

X=-t+1

z=2t

1) Write a system of parametric equations of line (AB).

2) Prove that (AB) and (d) intersect at I.

j,k), consider the points A(1; -1 ; 1),

(tisareal number).

3) Show that an equation of the plane (P) determined by (AB) and (d) is x+y+z—-1=0.

4) Consider the pointH(Z; 1; >

a- Prove that I is the orthogonal projection of H on (P).
b- Verify that (AB) and (d) are perpendicular.
c- Kis a point on (d) such that IK = IA. Calculate the volume of the tetrahedron HABK.

11- (4 points)

An urn contains 4 black balls, 3 white balls and n red balls; (n > 2).

A-
In this part take n =2,

We draw randomly and simultaneously 3 balls from the urn.

1) Calculate the probability of drawing three balls having the same color.

2) Designate by E the event:

« Among the three drawn balls there are exactly two balls of the same color ».

Prove that the probability P(E) is equal to % :

B-

In this part we draw randomly and simultaneously 2 balls from the n+7 balls in the urn.
Designate by X the random variable equal to the number of red balls obtained among the three drawn.

1) Prove thatP(X =2) =

n(n-1)
(n+6)(n+7)"

2) Determine the probability distribution of X.

3) Calculate n so that the mathematical expectation E(X) is equal to 1.




I11- (4 points)

In the complex plane referred to a direct orthonormal system (O; u, v) , consider the points A and B
T

with affixes z, =1and zz = eIZ . Designate by E the midpoint of segment [AB].
2+ \/E +1i ﬁ
1 .

4

1) Verify that zg =

900 0
2) a- Verify, for every real number 0, that 1+e'®=e2|e24e 2|,

ir
b- Show that z_ = (cos gje 8.
c- Deduce from the preceding results the exact value of cosg .

3) Let M be a variable point with affix z such that ‘22 —\/E—i\/i‘ =2.
Prove that M describes a circle (C) and verify that O belongs to (C).

IV- (8 points)

eX

e* +1

Consider the function f defined on I by f(x) =

. Designate by (C) the representative curve

of f in an orthonormal system (0;7,f )

1) Calculate lim f(x) and lim f(x). Deduce the asymptotes of the curve (C).

X—>—00 X—>+00
2) Calculate f'(x) and set up the table of variations of f.
y e*(1-¢") . . i .
3) Show that f"(x) = m . Prove that (C) has a point of inflection | to be determined.
4) Write an equation of the tangent (T) to (C) at the point I.
5) Draw (T) and (C).
6) The function f has on [ an inverse function g.
a- Draw the representative curve (G) of g in the given system.

b- Verify that g(x) = In (%) .

c- (G) and (C) intersect at a point with abscissa a. Calculate, in terms of a, the area of the region
bounded by (C), (G) and the two axes of coordinates.
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Ql Answers M
1 | AB(-3,3,0) so V(1,—1,0)isadirection vector of (AB) then:x =m+1y=-m-1z=1. 0.5
1 11 5 1 = "
Fort= > I belongs to (d). AI _E > 0 1; BI > _E ;0 |; hence Bl=-5 Aland B,Aand |
2 | are collinear. I belongs to (AB) and (d) with A ¢ (d) therefore (AB) and (d) intersect at I. 0.5
OR: For m :—%; | belongs to (AB) where (d) and (AB) are distinct.
The coordinates of A and B verify the given equation since: X, +y, +z, —1=1-1+1-1=0
3 |and Xz +Yg; +2; —1=0. Moreover (d) c (P) since the coordinates of the point 1
(—t+1-t;2t) verify the given equation for every t.
3.3.3 .
IH =;=;= n-(1;1;1 :
m (2 > 2)and p(1;1; 1) are collinear 05
And | belongs to plane (P), hence I is the orthogonal projection of H on (P).
4 | AB. \7d =3-3+0=0, then (d) and (AB) are perpendicular at I. 0.5
2
Area(ABK)x IH IKxAB  1AxAB \/2_X3‘/§
Volume = . Areaof KAB = = = ==u? .
2 2 2 2
4C | Therefore V = BXB\/_ _33 us. !
2x3x3 4
|AB-(AH A AK)
( Or: Find the coordinates of point K (two possibilities) then use V = 5
Qll Answers M
3.3
Al | P(3 balls of same color) = P(3B) + P(3W) = C4 +3C3 = 8% 0.5
Ca
P(E) = P(2 balls of same color)=
. _ . 2 1 2 1 2 1
A2 | p(2R,IR)+ P(2B,1B) + P(2W,1W) = Z2*C1 +CaxCs #C3xCq _ 55 1
C, 84
2
C nt 2| n+5)! n(n-1
B1 | p(X=2) =p(2 red) =1 = (n+o)__ nln-1 1
c .7 2!(n—2)| (n+7)! (n+7)(n+6)
2
C; _ 7x6 . lp 42 14n n’—n
80 ¢, T (n+N(n+6) (N+7)(n+6) | (N+7)(N+6) | (n+7)(n+6) 1
_ 1 Cl
p(X=1)= PARR) = X1 Tnx2 .
C:, (n+7)(n+6)
2 J—
B3 | E(X)= 14? £an —2n =1 thenn?-n-42=0, son=7o0rn=-6. Thereforen=7 0.5
n°+13n+42




Qlll Answers M
1 ZE:ZAJFZB_1 1+cosE+isin® | =1 1+£+i£ :2+\/§+i£. 0.5
2 2 4 4) 2 2 4 4
6( 6 _#6 (6.8y 12-8) - _
2a ez?(ez?_l_e—z? )= EE{: =}+E 22 _ iy QU0 g 4 B 0.5
1 iT) g if T T hud iT
= 4 |_Zc8(e8 8)—e 8 — 8
2b | ze 2[1+e J 2e (eS+e 9)=e (Zcossj (COSSJE 1
T _2+V2 £| hence

2+42 2. cos? = +icos —sin = =
+ I 8 8 8 4 4
1

coS ge8 T T
2¢C '
cosE:+ 2+ﬁ (cosz>0)
8 \/ 4 8

3 122 —2Zgl = 2; |2 -Z5l=1 hence BM=1, and M describes the circle with center B and 1
radius 1. Since BO=1 then O belongs to (C).
Qlv Answers M
lim f(x)= lim € 0 =0. the line with equation y = 0 is an asymptote to (C).
1 |7 o 11 041 1
e* 4o . e . . . .
lim f(x)=lim =—= lim — =1. the line with equation y = 1 is an asymptote to (C)
X—>+0 x—>+0@X 11 4op  x>tw @
. e*(e* +1)—e*(e” e X —0 +00
F(x)= © x) &) ;>0 f(x) + 1
2 (e* +1)? (e* +1)
f(X) / 1
0
e*(e* +1)® —2e*(e* +1)e* e*(1-e¥) . . . N
f'(x) = = , 50 T "(x) vanishes while changing sign at
s | ' o) Loy ) ging sig L5
x=0. Hence the point 1(0,1/2) is a point of inflection.
1 x x 1
4 | (0 :—, —===; y=—+= 0.5
©) Y 2 4 y 4 2
. (G) is symmetric of (C) with respect to the
6a | line with equation y = x. 1
N ] A hencex:ln(LJ;
5 Bl 22 S 1 1-y 1-y
4 -2 —E =1 /'6 L 4 3 !
AL 6b | o g(x) = In(ij 1
IJ[ 1-x
[
r
Using the symmetry with respect to the first bisector, the area of the region is twice the area of
the region bounded by (C) and the first bisector,
af  .x 1
6 Azzj(f . }1 ]: (2In(e* +1)-2In2— 0?2
e
0
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