وزارة التربية والتعليم العالي المديرية العامة للتربية دائرة الامتحانات

الاسم: الرقم:	 مسابقة في مادة الرياضيات المدة ساعة 	عدد المسائل: ثلاث

ملاحظة: - يسمح باستعمال آلة حاسبة غير قابلة للبرمجة أو اختزان المعلومات أو رسم البيانات.

- يستطيع المرشح الإجابة بالترتيب الذي يناسبه (دون الالتزام بترتيب المسائل الواردة في المسابقة).

I- (5 points)

The price of one kg of sugar and one kg of salt together was 1700 LL.

During an economical crisis, the price of sugar increased by 12% while the price of salt decreased by 15% after which the price of one kg of sugar and one kg of salt together becomes 1769LL.

- 1) Calculate the initial price of 1 kg of sugar and of 1 kg of salt.
- 2) A person bought, during the economical crisis, 5 kg of sugar and 2 kg of salt. Calculate the sum paid by this person.

II-(5 points)

The staff of a medical center consists of 100 employees divided into three categories: doctors, nurses and technicians.

20% of the staff are doctors and 60% are nurses.

80% of the doctors are males and 75% of the nurses are females.

60% of the staff are females.

1) Copy and complete the following table:

	Doctors	Nurses	Technicians	Total
Males				
Females				60
Total	20	60		100

2) A person is chosen randomly from this staff. Calculate the probability of each of the following events:

A: « The chosen person is a female doctor »

B: « The chosen person is a female knowing that she is a doctor »

C: « The chosen person is a female or a doctor »

D: « The chosen person is a male or not a doctor»

3) Suppose that all the names of the staff of this center are written each on a card, and the 100 cards are put in a box. We draw at random, successively and without replacement, two cards from this box.

Determine the probability of drawing two cards carrying the names of two male technicians.

III- (10 points)

Consider the function f defined over $\left] - \infty ; \frac{1}{2} \right[\cup \left] \frac{1}{2} ; + \infty \right[\text{ by } f(x) = 2x + 1 + \frac{1}{2x - 1} \right]$ and designate by (C) its representative curve in an orthonormal system (O; \vec{i} , \vec{j}).

- 1) Determine $\lim_{\substack{x \to \frac{1}{2} \\ x > -}} f(x)$, $\lim_{x \to \frac{1}{2}} f(x)$ and deduce an asymptote (d) to (C).
- 2) Calculate $\lim_{x \to +\infty} f(x)$ and $\lim_{x \to -\infty} f(x)$. Show that the straight line (D) with equation y = 2x + 1 is an asymptote to (C).
- 3) Show that the point $I\left(\frac{1}{2}; 2\right)$ is a center of symmetry for (C).
- 4) a- Verify that $f'(x) = \frac{8x(x-1)}{(2x-1)^2}$ and set up the table of variations of f.
 - b- Draw (d), (D) and (C).
- 5) Solve the inequality $f(x) \ge 0$.
- 6) Consider the two points $A\left(\frac{1}{2};1\right)$ and M(3;0).

The straight line (MA) cuts the axis of ordinates at a point N.

- a- Verify that an equation of the straight line (MA) is: $y = -\frac{2}{5}x + \frac{6}{5}$.
- b- Calculate the ordinate of N.
- c- Verify that $OM \times ON = \frac{1}{2}f(3)$.

241		n 1 1 - 2
الاسمة	مسابقة في مادة الرياضيات	مسره ع معبار التصحيح
• • • • • • • • • • • • • • • • • • • •	عي الرياسيا	مشروع معيار التصحيح
اا، ق. •	المدة ساعة	
וע בא:	انمده ساعه	
7 3		

QI	Answers	Mark
1	Let x be the price of a kg of sugar and y be the price of a kg of salt. $\begin{cases} x + y = 1700 \\ 1.12x + 0.85y = 1769 \end{cases}$ Using a calculator we get x=1200 and y=500. The initial price of a kg of sugar is 1200 LL and that of a kg of salt is 500 LL.	3
2	5(1.12)(1200)+ 2(0.85)(500)= 7570 The sum paid by the person is 7570 LL.	2

QII	Answers				Mark		
1	Males Females Total	Doctors 16 4 20	Nurses 15 45 60	Technicians 9 11 20	Total 40 60 100		1.5
2	P(A) = $\frac{4}{100}$ = 0.04, P(B) = $\frac{4}{20}$ = 0.2 P(C) = P(Female or a doctor) = P(Female) + P(doctor) - P(Female and doctor). = $\frac{60}{100}$ + $\frac{20}{100}$ - $\frac{4}{100}$ = 0.76 p(D) = p(Male or not a doctor) = p(Male) + p(not a doctor) - p(Male and not a doctor) = $\frac{40}{100}$ + $\frac{80}{100}$ - $\frac{24}{100}$ = $\frac{96}{100}$ = 0.96					2	
3	Probability of $= \frac{9}{100} \times \frac{8}{99} =$	•	mes of two n	nale technicians			1.5

QIII	Answers	Mark
1	$\lim_{\substack{x \to 1/2 \\ x > 1/2}} f(x) = +\infty \; ; \; \lim_{\substack{x \to 1/2 \\ x < 1/2}} f(x) = -\infty \; . \; \text{The of equation} \; \; x = \frac{1}{2} \text{ is an asymptote to (C)}.$	1
2	$\lim_{x \to +\infty} f(x) = +\infty \; ; \; \lim_{x \to -\infty} f(x) = +\infty \; \lim_{x \to -\infty} \left[f(x) - (2x+1) \right] = \lim_{x \to -\infty} \frac{1}{2x-1} = 0 \text{ and}$ $\lim_{x \to +\infty} \left[f(x) - (2x+1) \right] = \lim_{x \to +\infty} \frac{1}{2x-1} = 0 \text{. The straight line of equation } y = 2x+1 \text{ is an asymptote to (C).}$	1
3	$f(1-x) + f(x) = 2(1-x) + 1 + \frac{1}{2(1-x)-1} + 2x + 1 + \frac{1}{2x-1} = 4 + \frac{1}{-2x+1} + \frac{1}{2x-1} = 4 + 2 \times 2.$ Then, the point $I(\frac{1}{2}; 2)$ is a center of symmetry for (C).	1
4a	$f'(x) = 2 - \frac{2}{(2x-1)^2} = \frac{2(4x^2 - 4x + 1) - 2}{(2x-1)^2} = \frac{8x^2 - 8x}{(2x-1)^2} = \frac{8x(x-1)}{(2x-1)^2}$ $\frac{1}{2}$ $f'(x) = 0 \text{ for } x = 0 \text{ or } x = 1.$ $\frac{x - \infty}{f'(x)} + 0 - \frac{1}{-0} + \infty$ $\frac{1}{f(x)} + \infty$ $-\infty$	2
4b	5- 3- 3- 11 3- -5 -4 -3 -2 -1/0 1 2 3 4 5 x -1- -1- -2- -3- -4-	2
5	$f(x) \ge 0$ when (C) is above or on the axis of abscissas which is true for $x > \frac{1}{2}$ or $x=0$.	0.5
6a	The coordinates of A and of M satisfy the given equation.	1
6b	For $x=0$, $y=\frac{6}{5}$.	1
6b	$OM \times ON = 3 \times \frac{6}{5} = \frac{18}{5}$ and $\frac{1}{2}f(3) = \frac{1}{2}(7 + \frac{1}{5}) = \frac{36}{10} = \frac{18}{5}$; then $OM \times ON = \frac{1}{2}f(3)$.	0.5