ملاحظة: يُسمح باستعمال آلة حاسبة غير قابلة للبرمجة أو اختزان المعلومات أو رسم البيانات. يستطيع المُرشّح الاجابة بالترتيب الذي يناسبه (دون الالتزام بترتيب المسائل الوارد في المسابقة).

I- (4 points)

In the space referred to a direct orthonormal system (O; \vec{i} , \vec{j} , \vec{k}), consider the points

A (3,1,1) and F (2,2,-2). Denote by (d) the line defined as: $\begin{cases} x=-t \\ y=t+2 \end{cases}$ (t is a real parameter). z=t

1) Let (P) be the plane through the point F and containing the line (d).

Verify that: x + z = 0 is an equation of the plane (P).

- 2) Let E(1,1,-1) be a point on (d). Verify that E is the orthogonal projection of A on the plane (P).
- 3) Denote by L the point on the line (d) so that $x_L \neq 0$ and the triangle EFL is isosceles with principle vertex E. Calculate the coordinates of L.
- 4) Calculate the volume of the tetrahedron AEFL.

II- (4 points)

Consider a box V containing six cards numbered 1; 2; 3; 4; 7; 9, and two urns U_1 and U_2 such that:

- U₁ contains 3 red balls and 5 black balls
- U₂ contains 4 red balls and 4 black balls.

One card is randomly selected from the box V.

If this card shows an even number, then two balls are randomly and simultaneously selected from U_1 . If the card shows an odd number then two balls are randomly and simultaneously selected from U_2 .

Consider the following events:

- E: "The card selected shows an even number"
- O: "The card selected shows an odd number"
- R: "The two selected balls are red"
- B: "The two selected balls are black".
- 1) a- Calculate the probability P(R/E) and deduce that $P(E \cap R) = \frac{1}{28}$.
 - b- Calculate $P(O \cap R)$ and P(R).
- 2) Show that $P(B) = \frac{11}{42}$.
- 3) Knowing that the two selected balls are black, calculate the probability that these two balls come from urn $\,U_1\,$.

III- (4 points)

In the complex plane referred to a direct orthonormal system $(O; \vec{u}, \vec{v})$, consider the points E(2i),

A(-i) , M(z) and M'(z') where z and z' are two complex numbers such that: $z' = 2i - \frac{2}{z}$. $(z \neq 0)$.

- 1) a- Show that z(z'-2i) = -2.
 - b- Calculate arg(z) + arg(z'-2i).
- 2) a- Verify that: $z' = \frac{2i(z+i)}{z}$.
 - b- Show that $OM' = \frac{2AM}{OM}$
 - c- As M moves on the perpendicular bisector of [OA], prove that M' moves on a circle (C) whose center and radius are to be determined.
- 3) Suppose that z = x + iy and z' = x' + iy' where x, y, x' and y' are real numbers.

a- Show that
$$x' = \frac{-2x}{x^2 + y^2}$$
 and $y' = 2 + \frac{2y}{x^2 + y^2}$.

b- If x = y, show that the lines (OM) and (EM') are perpendicular.

IV- (8 points)

Consider the function f defined over $]-1;+\infty[$ as: $f(x) = e^x - \frac{2e^x}{x+1}$.

Denote by (C) its representative curve in an orthonormal system $\left(O; \overrightarrow{i}, \overrightarrow{j}\right)$.

- 1) a- Determine $\lim_{x\to -1} f(x)$. Deduce an asymptote (D) to (C).
 - b- Determine $\lim_{x\to +\infty} f(x)$ and calculate f(2.5).
- 2) Prove that $f'(x) = \frac{(x^2 + 1)e^x}{(x + 1)^2}$ and set up the table of variations of the function f.
- 3) Let (d) be the line with equation y = x. The curve (C) intersects (d) at a unique point A with abscissa α . Verify that $1.8 < \alpha < 1.9$.
- 4) a- Specify the coordinates of the points of intersection of (C) with the coordinates axes. b- Draw (D), (d) and (C).
- 5) a- Prove that, over $]-1;+\infty[$, f has an inverse function f^{-1} . b- Draw (C'), the representative curve of f^{-1} , in the same system as that of (C).
- 6) Suppose that the area of the region bounded by (C), the x-axis and the lines with equations x = 0 and x = 1 is 0.53 units of area.

 Calculate the area of the region bounded by (C'), the line (d), the y-axis and the line with equation x = -1.

2

دورة ٢٠١٦ العادية	امتحانات الشهادة الثانوية العامة الفرع : علوم الحياة	وزارة التربية والتعليم العالي المديرية العامة للتربية دائرة الامتحانات
الاسم: الرقم:	مسابقة في مادة الرياضيات المدة ساعتان	مشروع معيار التصحيح

I	Answer	M
1	Verify that F belongs to (P) and (d) lies in it.	1
2	E is on (d) then E belongs to (P) and $\overrightarrow{AE}(-1,0,-2)$ so $\overrightarrow{AE} = -2\overrightarrow{N}_{(P)}$	1
3	$EF^2 = 3$ and $EL^2 = 3(t+1)^2$ then $3(t+1)^2 = 3 \Rightarrow$ t = -2 or $t = 0$ So $L(2, 0, -2)$	1
4	$V = \frac{1}{6} \left \overrightarrow{AL} \cdot (\overrightarrow{AE} \wedge \overrightarrow{AF}) \right = \frac{\left -8 \right }{6} = \frac{4}{3} u^3$	1

II		Answer	
	a	$P(R/E) = \frac{C_3^2}{C_8^2} = \frac{3}{28}$; $p(E \cap R) = p(E)$. $P(R/E) = \frac{2}{6} \times \frac{C_3^2}{C_8^2} = \frac{1}{28}$	1
1	b	$p(O \cap R) = p(O). \ P(R/O) = \frac{4}{6} \times \frac{C_4^2}{C_8^2} = \frac{1}{7}$ $P(R) = p(E \cap R) + p(O \cap R) = \frac{5}{28}.$	1
2		$P(B) = p(E \cap B) + p(O \cap B) = p(E).p(B/E) + p(O).p(B/O) = \frac{1}{3} \times \frac{C_5^2}{C_8^2} + \frac{2}{3} \times \frac{C_4^2}{C_8^2} = \frac{11}{42}.$	1
3		$p(E_B) = \frac{p(E \cap B)}{p(B)} = \frac{5/42}{11/42} = \frac{5}{11}$	1

I	II	Answer	
1	a	$z'-2i = \frac{-2}{z}$ then $z(z'-2i) = -2$	0.5
	b	$arg(z(z'-2i)) = arg z + arg(z'-2i) = arg(-2) = \pi[2\pi]$	0.5
	a	$z' = \frac{2i(z+i)}{z}$	0.5
2	b	$OM' = \left \frac{2i(z+i)}{z} \right = \frac{\left 2i(z+i) \right }{\left z \right } = \frac{\left 2i \right \left z+i \right }{\left z \right } = \frac{2AM}{OM}$	0.5
	С	M belongs to perp bis of [OA] then MA=MO so OM' = 2, therefore M' Moves on circle center O and radius 2.	0.5
	a $x' = \frac{-2x}{x^2 + y^2}$ and $y' = 2 + \frac{2y}{x^2 + y^2}$		1
3	b	x= y then $M'(\frac{-1}{x}, 2 + \frac{1}{x})$ so $\overrightarrow{EM'}(\frac{-1}{x}, \frac{1}{x})$ and $\overrightarrow{OM}(x, y)$	0.5
		EM'. OM = 0 so (EM') \perp (OM).	

IV Answer		Answer	M	
1	a	$\lim_{\substack{x \to -1 \\ x > -1}} f(x) = -\infty \text{ then the line (D)} : x = -1 \text{ is an asymptote to (C)}.$	0.5	
	b	$\lim_{x \to +\infty} f(x) = (1)(+\infty) = +\infty \; ; \qquad f(2.5) \approx 5.22.$	1	
	2	$f'(x) = e^{x} - \left(\frac{2e^{x}(x+1) - 2e^{x}}{(x+1)^{2}}\right) \qquad \frac{x}{f'(x)} + \frac{1}{(x+1)^{2}} = \left(\frac{(x+1)^{2} - (x+1) + 2}{(x+1)^{2}}\right) e^{x} \qquad f(x)$ $= \left(\frac{x^{2} + 1}{(x+1)^{2}}\right) e^{x} > 0 \text{ for all } x$	1	
í	3	Let $\phi(x) = f(x) - x$. $\phi(1.8) \approx -0.07 < 0$ and $\phi(1.9) \approx 0.17 > 0$		
	a	If $x = 0$, then $f(0) = -1$, so (C) cuts the y-axis in (0,-1) If $f(x) = 0$, then $x = 1$, so (C) cuts the x-axis in (1; 0).	0.5	
4	b	y (C) A (C') 1	1	
5	a	On $]-1;+\infty[$, f is continuous and strictly increasing, it has an inverse function f^{-1} .	0.5	
	b	(C') and (C) are symmetrical with respect to y = x. See graph.	1	
(5	Due to symmetry w.r.t. $y = x$ The area of the region bounded by (C'), the line (d), the y-axis and the Line with equation $x = -1$ is = 0.53 + area of right isosceles triangle with side 1 = 1.03 units of area	1.5	