امتحانات الشهادة الثانوية العامة فرع: العلوم العامة

وزارة التربية والتعليم العالي المديرية العامة للتربية دائرة الامتحانات الرسمية

X+1	m1 *1 11 m 1 2 2 2 2 1	m 1:1 11
الاسم:	مسابقة في مادة الرياضيات	عدد المسائل: ست
•1 -		••
ă ti	71-1 - 1 7 1	
الرقم:	المدة: أربع ساعات	
7 3	C.S ·	

ملاحظة: - يسمح باستعمال آلة حاسبة غير قابلة للبرمجة او اختران المعلومات او رسم البيانات.

- يستطيع المرشّح الإجابة بالترتيب الذي يناسبه (دون الالتزام بترتيب المسائل الواردة في المسابقة).

I- (2.5 points)

In the table below, only one of the proposed answers to each question is correct. Write down the number of each question and give, with justification, the answer corresponding to it.

N°	Questions	Answers			
IN	Questions	a	b	c	d
1	The equation: $\arccos(3x-1) + \arccos x = \frac{\pi}{2}$ is satisfied for x =	$\frac{2}{3}$	$\frac{1}{2}$	$\frac{3}{5}$	$\frac{2}{5}$
2	z is a complex number. If $z = -\sqrt{2 + \sqrt{2}} + i\sqrt{2 - \sqrt{2}} \; ;$ then $z^2 =$	$i\frac{\pi}{4}$	$8e^{i\frac{\pi}{4}}$	$(2+\sqrt{2})e^{-i\frac{\pi}{4}}$	$4e^{-i\frac{\pi}{4}}$
3	$\int_{-a}^{a} \frac{x^2}{x^2 + 1} dx =$	2arctan(a)	$2[a - \arctan(a)]$	0	a – arctan(a)
4	If F is a function defined as: $F(x) = \int_{0}^{x} \sqrt{1+t^{2}} dt;$ then $F'(1)$ =	$\sqrt{2}$	2	1	$\frac{1}{2}$
5	A sequence (U_n) is defined as $U_0 = 5$ and $U_{n+1} = \sqrt{2 + U_n}$. If (U_n) is convergent, then its limit is:	0	2	-1	$\sqrt{2}$

II- (2.5 points)

In the space referred to a direct orthonormal system $\left(O;\overrightarrow{i},\overrightarrow{j},\overrightarrow{k}\right)$, consider the plane

- (P) with equation: x + y-z+1=0, the point A (1; 0; -1) and the line (d) defined
- as: x = t-1; y = t; z = -t+3 (t is a real parameter).
- 1) a- Show that the line (d) is perpendicular to plane (P).
 - b- Determine the coordinates of H, the point of intersection of (d) and (P).
- 2) Verify that the point K(0;-1;0) is the orthogonal projection of A on (P).
- 3) Denote by (Δ) the line passing through H, contained in the plane (P) and perpendicular to the line (KH).
 - a- Verify that $\overrightarrow{V}(-2;1;-1)$ is a direction vector of the line (Δ) .
 - b- Write a system of parametric equations of line (Δ) .
- 4) Consider in the plane (P) the circle (C) with center H and radius $\sqrt{6}$. This circle intersects the line (Δ) in two points T and S. Determine the coordinates of T and S.

III- (3 points)

Given:

- A bag B₁ containing **one** 20 000 LL bill and **three** 50 000 LL bills.
- A bag B₂ containing **two** 20 000 LL bills and **two** 100 000 LL bills.
- A six-sided fair die (numbered 1 through 6).
- 1) The die is rolled once.

If this die shows 5 or 6, one ball is randomly selected from bag B_1 , otherwise one ball is randomly selected from bag B_2 .

Consider the following events:

A: «obtain a 20 000 LL bill»

B: «obtain a 50 000 LL bill»

C: «obtain a 100 000 LL bill»

E: «the die shows the number 5 or 6».

- a- Verify that the probability of the event A is $P(A) = \frac{5}{12}$.
- b- Which bill is the most probably to be selected? Justify.
- 2) All bills from B_1 and B_2 are now placed in the same bag B and the same die is rolled. If the die shows 5 or 6, then two bills are randomly and simultaneously selected from bag B, otherwise three bills are randomly and simultaneously selected from B.
 - a-Verify that the probability to have a total sum less than 80 000 LL is $\frac{13}{84}$.
 - b- The total sum obtained is less than 80 000 LL. What is the probability that the die shows the face numbered 3?

2

IV- (3 points)

ABCD is a direct rectangle such that AB = 3,

$$AD = 2$$
 and $(\overrightarrow{AB}, \overrightarrow{AD}) = \frac{\pi}{2} [2\pi]$.

F is the midpoint of segment [BC].

The perpendicular through B to the line (AC) intersects (DC) at E.

Let S be the similitude that maps A onto B and B onto F.

- 1) Determine the ratio (scale factor) k and an angle α of S.
- 2) Justify that the image of line (AC) under S is (BE).
- 3) Determine the image of (BC) under S. Deduce the point H image of C under S.
- 4) Determine the image of the rectangle ABCD under S.
- 5) The plane is referred to a direct orthonormal system $(A; \vec{u}, \vec{v})$ with $\vec{u} = \frac{1}{3} \overrightarrow{AB}$ and $\vec{v} = \frac{1}{2} \overrightarrow{AD}$. Write the complex form of S, then deduce the affix of its center W.
- 6) Let M be a point in the plane with affix $z = 3\cos\theta + 2i\sin\theta$ (with $0 < \theta < \frac{\pi}{2}$).
 - a- Prove that M moves on an ellipse $\left(\Gamma\right)$ with center A, having B and D as two of its vertices.
 - b- Write an equation of (Γ') the image of the ellipse (Γ) under S.

V- (2 points)

In the plane referred to an orthonormal system $(O; \vec{i}, \vec{j})$, consider the points A(-1;0) and B(1;0). Let M(x;y) be any point in the plane such that $|x| \ge 1$. Denote by K the orthogonal projection of M on the x-axis. Suppose that: $MK^2 = AK \times BK$.

- 1) Prove that M moves on the hyperbola (H) with equation $x^2 y^2 = 1$.
- 2) a- Find the coordinates of the vertices and foci of (H).
 - b- Write the equations of the asymptotes to (H).
 - c- Draw (H)
- 3) Consider the point G(0;-1) and the parabola (P) with equation $y = \frac{1}{2}x^2$.

Let L be the common point to (P) and (H) so that $x_L > 0$.

Prove that (GL) is a common tangent to (P) and (H).

VI- (7 points)

Part A

Consider the differential equation (E): $y'+y=1+x+e^{-x}$.

- 1) Verify that $u = x + xe^{-x}$ is a particular solution of (E).
- 2) Let y = z + u where z is a function of x.
 - a- Form the differential equation (E') satisfied by z.
 - b- Solve (E') and deduce the general solution of (E).
 - c- Find the particular solution of (E) verifying y(0) = 1.

Part B

Let h be the function defined over \mathbb{R} as $h(x) = 1 - xe^{-x}$.

- 1) Calculate h'(x) and set up the table of variations of the function h.
- 2) For all real numbers x, verify that h(x) > 0.

Part C

Let f be the function defined over \mathbb{R} as $f(x) = x + (x+1)e^{-x}$ and denote by (C) its representative curve in an orthonormal system $(O; \vec{i}, \vec{j})$; graphical unit is **2 cm**.

- 1) Calculate $\lim_{x\to -\infty} f(x)$ and $\lim_{x\to -\infty} \frac{f(x)}{x}$. Give a graphical interpretation.
- 2) Let (d) be the line with equation y = x.
 - a- Discuss, according to the values of x, the relative positions of (C) and (d).
 - b- Show that (d) is an asymptote to (C) at $+\infty$.
- 3) a- Verify that f'(x) = h(x) and set up the table of variations of the function f.
 - b- Prove that the curve (C) has an inflection point W whose coordinates are to be determined.
 - c- Let E be the point on (C) where the tangent (D) to (C) is parallel to the line (d). Determine the coordinates of E.
- 4) Prove that the equation f(x) = 0 has a unique root α , then verify that $-0.7 < \alpha < -0.6$.
- 5) Draw (d), (D) and (C).
- 6) Let g be the inverse function of f, and denote by (G) the representative curve of g in the system $(O; \vec{i}, \vec{j})$.
 - a- Draw (G).
 - b- Solve the inequality $\ln(-g(x)) > 0$.
- 7) Calculate, in cm², the area of the region bounded by the curve (G), the line (d) and the x-axis.

Marking Scheme- Math GS – First Session - 2016

QI	Solution	G
1	$\arccos(3x-1) = \frac{\pi}{2} - \arccos x \; ; \; \frac{1}{3} \le x \le \frac{2}{3} \; ; \; \cos(\arccos(3x-1)) = \sin(\arccos x)$ $3x-1 = \sqrt{1-x^2} \; ; \text{thus} \; \; x = 0 \text{ or } x = \frac{3}{5} \; (x = 0 \text{ rejected}) \; \text{Or by calculator.} (c)$	1
2	$z = -\sqrt{2 + \sqrt{2}} + i\sqrt{2 - \sqrt{2}} ; z^2 = 2\sqrt{2} - i\sqrt{2} = 4e^{-i\frac{\pi}{4}}$ $OR \text{ let } \theta = \arg(z) \text{ then } \arg(z) = \frac{7\pi}{8} \text{ and } z = 2 \text{ hence } z^2 = 4e^{-i\frac{\pi}{4}}$ (d)	1
3	$\int_{-a}^{a} \frac{x^2}{x^2 + 1} dx = 2 \int_{0}^{a} \frac{x^2}{x^2 + 1} dx = 2 \int_{0}^{a} \left(1 - \frac{1}{x^2 + 1} \right) dx = 2(a - \arctan a). $ (b)	1
4	$F(x) = \int_{0}^{x} \sqrt{1 + t^{2}} dt, \ F'(x) = \sqrt{1 + x^{2}} \ ; F'(1) = \sqrt{2} $ (a)	1
5	$\lim_{n\to\infty} u_n = L, \ L = \sqrt{2+L} \ , L^2 - L - 2 = 0 \ (L \ge 0), \ L = 2 \ \text{ou} \ L = -1 \text{(rej)} $ (b)	1

QII	Solution	G
1a	$\overrightarrow{v_d}(1,1,-1) = \overrightarrow{n_P}$ then (d) is perpendicular to plane (P).	0.5
1b	t-1+t+t-3+1=0 thus t=1 . H(0,1,2)	1
2	$\overrightarrow{AK}(-1,-1,1) = \overrightarrow{n}_{(P)}$ and $K \in (P)$	1
3a	$\overrightarrow{V_{(\Delta)}} = \overrightarrow{AH} \wedge \overrightarrow{n_{(P)}} \ \mathbf{OR} \ \overrightarrow{V}_{(\Delta)}.\overrightarrow{AH} = 0 \ \text{et} \ \overrightarrow{V}_{(\Delta)}.\overrightarrow{V}_{(d)} = 0$	1
3b	x = -2k, $y = k + 1$, $z = -k + 2$.	0.5
4	$R = \sqrt{6}$; $M \in (\Delta) HM^2 = R^2$ then $6k^2 = 6$, $k = \pm 1$ $T(-2,2,1), S(2,0,3)$	1

QIII	Solution	G
1a	$P(A) = P(E \cap A) + P(E \cap A) = P(E) \times P(A / E) + P(E) \times P(A / E) = \frac{2}{6} \times \frac{1}{4} + \frac{4}{6} \times \frac{2}{4} = \frac{5}{12}$	1.5
1b	$P(B) = \frac{1}{4}$ and $P(C)=1-[P(B)+P(C)]=\frac{1}{3}$ thus the bill 20 000 is the most probable to be obtained.	1.5
2a	$P(S < 80\ 000) = \frac{2}{3} \left(\frac{C_3^2}{C_8^2}\right) + \frac{2}{6} \left(\frac{C_3^1 \times C_3^1}{C_8^2}\right) + \frac{4}{8} \left(\frac{C_3^3}{C_8^3}\right) = \frac{13}{84}$	1.5
2b	P(face3/S < 80000) = $\frac{\frac{1}{6} \times \frac{C_3^3}{C_8^3}}{\frac{13}{84}} = \frac{1}{52}$	1.5

QIV	Solution	G
1		0.5
2	S(AC) is a line passing through B and perpendicular to (AC) so it is (BE).	0.5
3	$S(BC) \text{ is the line } \left(\Delta\right) \text{ passing through F and perpendicular to (BC)}$ $\left(AC\right) \rightarrow \left(BE\right) \\ (BC) \rightarrow \left(\Delta\right) \\ \text{thus } S(C) = H = (\Delta) \cap (BE)$	1.5
4	S(ABCD)=BFHP with P being the fourth vertex of the rectangle BFHP	0.5
5	$z' = \frac{1}{3}iz + 3$, $z_W = \frac{27}{10} + \frac{9}{10}i$	1
6a	$z = 3\cos\theta + 2i\sin\theta = x + iy \text{ then } \cos\theta = \frac{x}{3} \text{ and } \sin\theta = \frac{y}{2}, \text{ thus}(\Gamma) : \frac{x^2}{9} + \frac{y^2}{4} = 1$ Center A(0,0). Vertices M(3,0)=B and N(0,2)=D.	1
6b	$z' = \frac{1}{3}i(x + iy) + 3$, $x = 3y'; y = 9 - 3x'$, thus (Γ') : $\frac{(x - 3)^2}{4/9} + y^2 = 1$ OR : The center of (Γ') is B(3,0), the two vertices are F and H such that BF=1 and FH=2/3. Equation: $\frac{(x - 3)^2}{4/9} + y^2 = 1$	1

QV	Solution	G
1	$MK^{2} = AK \times BK$, $y^{2} = x-1 \times x+1 = x^{2}-1$, $x^{2} - y^{2} = 1$	1
2a	Rectangular hyperbola. Vertices: A(-1,0) and B(1,0). Foci: $F(\sqrt{2},0)$ and $F'(-\sqrt{2},0)$.	1
2b	Asymptotes: $y = x$, $y = -x$.	0.5

QVI	Solution		
A	$1 \qquad u(x) = x + xe^{-x}, \ u'(x) = 1 + e^{-x} - xe^{-x} \cdot 1 + e^{-x} - xe^{-x} + x + xe^{-x} = 1 + x + e^{-x} \text{ thus, } u(x) \text{ is a solution of the differential equation.}$		
	2a	z' + z = 0	0.5
	2b	$z = Ce^{-x}$ thus $y = Ce^{-x} + x + xe^{-x}$	0.5
	2c	$y(0)=C=1$ thus $y = x + (x+1)e^{-x}$	0.5
В	1	$h(x) = 1 - xe^{-x} ,$ $h'(x) = -e^{-x} + xe^{-x} =$ $h'(x) > 0 \text{ si } x > 0$ $\lim_{x \to -\infty} (x+1)e^{-x} = -\infty$ $x \to \infty$ $h'(x) = -\infty$ $h(x) + \infty$ $1 \to \infty$ $h(x) + \infty$ $1 \to \infty$ $1 \to \infty$	1
	2	The minimum of h is positive thus $h(x)>0$ for all real numbers x.	0.5
С	$\lim_{x \to -\infty} f(x) = -\infty \text{ since } \lim_{x \to -\infty} (x+1)e^{-x} = -\infty \text{ . } \lim_{x \to -\infty} \frac{f(x)}{x} = +\infty \text{ thus the curve (C) has an asymptotic direction parallel to y'Oy.}$		1

2a	$f(x) - y = (1+x)e^{-x}$. If x=-1, (C) intersects (d) in A(-1,-1), if x>-1 (C) is above (d).	1
	If x<-1 (C) is below (d).	
2b	$\lim_{x \to +\infty} f(x) = +\infty \text{ since } \lim_{x \to +\infty} \frac{1+x}{e^x} = 0 \text{ and since}$ $\lim_{x \to +\infty} [f(x) - x] = \lim_{x \to +\infty} \frac{1+x}{e^x} = 0 \text{ then } y = x \text{ is an asymptote to (C)}$	0.5
3a	f'(x) = h(x) thus $f'(x) > 0$ for all x	0.5
3b	$f''(x) = h'(x)$ but $h'(x) = 0$ for $x=1$ thus $W(1,1+2e^{-1})$ is a point of inflection	1
3c	$f'(x) = 1$ thus $-xe^{-x} = 0$ so $x = 0$ and $E(0,1)$	1
4	f is defined, continuous and strictly increasing from $-\infty$ to $+\infty$ thus the equation $f(x)=0$ has a unique root α . $f(-0.7)\times f(-0.6)=-0.0958\times 0.1288=-0.01<0$ hence $-0.7<\alpha<-0.6$	1
5	(C) (G) (G) (G) (G) (G) (G) (G) (G) (G) (G	1
6a	(G) is the symmetric of (C) with respect to the line with equation y=x	1
6b	$\ln(-g(x)) > 0$; $-g(x) > 0$ and $-g(x) > 1$ thus $g(x) < -1$ therefore $x \in]-\infty, -1[$	1
7	$A = \int_{-1}^{0} [f(x) - x] = \int_{-1}^{0} (e^{-x} + xe^{-x}) dx = 4(e - 2) cm^{2}$	1.5