وزارة التربية والتعليم العالي المديرية العامة للتربية دائرة الامتحانات الرسمية

الاسم:	مسابقة في مادة الرياضيات	عدد المسائل: خمسة
الرقم:	المدة: ساعتان	

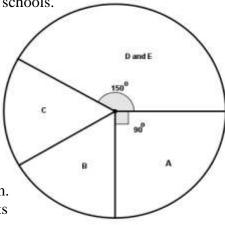
ارشادات عامة: - يسمح باستعمال آلة حاسبة غير قابلة للبرمجة أو اختزان المعلومات أو رسم البيانات. - يستطيع المرشح الإجابة بالترتيب الذي يناسبه دون الالتزام بترتيب المسائل الواردة في المسابقة.

I- (2 points)

Given the number $a = \frac{7 + \sqrt{125} + \sqrt{20}}{14}$.

- 1) Write a in the form $x + y\sqrt{5}$ where x and y are two rational numbers.
- 2) Compare a+1 and a^2 .
- **3**) Verify that $a^3 = 2a + 1$.

II - (4 points)


- 1) a. Verify that $x^2 + 4x + 3 = (x+2)^2 1$.
 - **b.** Factorize $x^2 + 4x + 3$.
- 2) Given an isosceles triangle ABC with vertex A so that its area is equal to $x^2 + 4x + 3$ and BC = 2x+2 (x > 0). Let [AH] be an altitude in this triangle.
 - **a.** Show that AH = x + 3.
 - **b.** Calculate AB² in terms of x.
- 3) a. Find x such that the area of ABC is equal to 8. [Use 1)a.]
 - **b.** For x = 1, calculate $\sin ABC$ and deduce, rounded to the nearest degree, the measure of angle ABC.

III - (4 points)

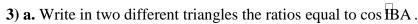
The Brevet students of five schools A, B, C, D and E sit for the official exam.

The adjacent circle graph represents the distribution of students in these schools.

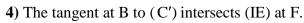
- The total number of students is 240
- \bullet The angle that represents the students of D and E together is 150°
- The angle that represents the students of A is 90°
- The number of students of B is equal to that of C.
- 1) Verify that the number of students of A is 60.
- 2) Calculate the number of students of B and that of C.
- 3) Show that the number of students of D and E together is 100.
- **4)** 20% of the students of A and 15% of the students of B failed, calculate the total number of students of A and B who passed the exam.
- 5) Three times the number of students of D minus the number of students of E is equal to 180.
 - **a.** Write a system of two equations with two variables to represent the number of students of D and E.
 - **b.** Solve the system and verify that the number of students of D is 70.

IV- (5points)

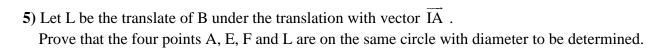
In an orthonormal system of axes x'Ox,y'Oy, consider the points $A(0\,;\,2)$ and $B(-4\,;\,0)$.

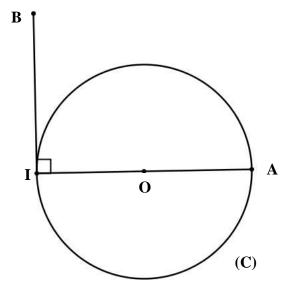

- 1) Plot the points A and B.
- 2) Show that $y = \frac{1}{2}x + 2$ is an equation of the line (AB).
- 3) Let [OH] be an altitude in triangle OAB.
 - **a.** Find an equation of line (OH).
 - **b.** Verify that the coordinates of H are $\left(-\frac{4}{5}; \frac{8}{5}\right)$.
- 4) The parallel through B to y'Oy intersects (OH) at E.
 - **a.** Calculate the coordinates of point E.
 - **b.** Calculate OE and HE.
- **5**) Let (C) be the circle circumscribed about triangle OBE and (d) the tangent at O to (C). The two lines (d) and (EA) intersect at F.

Prove that
$$\frac{EA}{EF} = \frac{4}{5}$$
.


V- (5 points)

In the adjacent figure:


- (C) is a circle with center O and diameter [IA] so that IA = 8
- B is a point on the tangent at I to (C) so that IB = 6.
- 1) Copy the figure that will be completed later.
- 2) Let (C') be the circle with diameter [IB]. The two circles(C) and (C') intersect at I and another point E.
 - **a.** Prove that A, E and B are collinear.
 - **b.** Calculate AB.


- **b.** Show that BE = 3.6
- **c.** Deduce the length AE, then calculate IE.

- **a.** Show that the two triangles EBF and EIB are similar.
- **b.** Deduce the value of $EI \times EF$.

2

وزارة التربية والتعليم العالي الشهادة المتوسطة دورة عام 2015 الاستثنائية المديرية العامة للتربية مشروع اسس التصحيح				
	Question I			
	Answers	Grade		
1	$a = \frac{7 + 7\sqrt{5}}{14} = \frac{1 + \sqrt{5}}{2} = \frac{1}{2} + \frac{1}{2}\sqrt{5} \ (0.25) + (0.25)$			
2	$a+1=\frac{3+\sqrt{5}}{2}$; $a^2=\frac{3+\sqrt{5}}{2}$ so $a+1=a^2$ (0.25) + (0.5) + (0.25)	1		
3	$a^3 = \frac{8+4\sqrt{5}}{4} = 2+\sqrt{5}$; $2a+1 = 2+\sqrt{5}$	0.5		
	Or $a^3 = a^2$. $a = (a+1)a = a^2 + a = a+1 + a = 2a + 1(0.25) + (0.25)$			
Question II				
1.a	$(x+2)^2-1=x^2+4x+4-1=x^2+4x+3$	0.5		
1.b	$x^2 + 4x + 3 = (x + 1)(x + 3)$	0.5		
2.a	Area of ABC = $\frac{BC \times AH}{2}$; $x^2 + 4x + 3 = \frac{2(x+1) \times AH}{2} = , (x+1)(x+3) = \frac{2(x+1) \times AH}{2}$	0.75		
	so AH = $x+3(0.25) + (0.25) + (0.25)$			
2.b	$AB^{2} = (x+3)^{2} + (x+1)^{2} = 2x^{2} + 8x + 10$			
3.a	$\begin{cases} (x+2)^2 - 1 = 8; (x+2)^2 = 9, x+2=3 & \text{ou } x+2=-3 \\ \text{So } x = 1 & \text{since } x = -5 \text{ not accepted}(\textbf{0.25}) + (\textbf{0.5}) + (\textbf{0.25}) \end{cases}$			
3.b	$\sin \hat{B} = \frac{AH}{AB} = \frac{2}{\sqrt{5}} = 0.89$, $\sin \hat{B} \approx 63^{\circ}$, $(0.5) + (0.25)$	0.75		
Question III				
1	Number of students of $A = 240 \times \frac{90}{360} = 60$	0.5		
2	Number of students of $B = 240 \times \frac{60}{360} = 40$, Number of students of $C = 40 (0.25) + (0.25)$	0.5		
3	Number of students of C and E = $240 \times \frac{150}{360} = 100$ or another method	0.25		
4	Number of students who failed in A and B = $60 \times \frac{20}{100} + 15 \times \frac{40}{100} = 18$ (0.25) + (0.25) Number of students who passed in A and B = $100 - 18 = 82$ students. (0.5)	1		
5.a	x + y = 100(0.25) 3x - y = 180.(0.75)	1		
	4x = 280, $x = 70$ and $y = 30(0.5) + (0.25)$	0.75		

	Question IV		
1	Fig.	0.5	
2	$y = \frac{1}{2}x + 2$ is the equation of (AB)slope (0.5) + b(0.25) or(verification of a point (0.25)	0.75	
3.a	y = -2x is the equation of (OH) slope (0.5) + equation (0.25)	0.75	
3.b	$\frac{1}{2}x + 2 = -2 x \text{ so } x = \frac{-4}{5} \text{ et y} = \frac{8}{5}(0.5) + (0.25)$	0.75	
4.a	$x_E = x_B = -4 \text{ et } y_E = -2x_E = -2(-4) = 8 \text{ therefore } E(-4; 8)(0.25) + (0.25)$	0.5	
4.b	$OE = \sqrt{16 + 64} = 4\sqrt{5}$; $HE = \sqrt{\frac{256}{5}} = \frac{16\sqrt{5}}{5}(0.25) + (0.5)$	0.75	
5	(d) // (AB) so : $\frac{EA}{EF} = \frac{EH}{EO}$ (Thales') so : $\frac{EA}{EF} = \frac{\frac{16\sqrt{5}}{5}}{\frac{4\sqrt{5}}{5}} = \frac{4}{5}$ // (0.25) + ratio(0.5) + (0.25)	1	
	Question V		
1		0.25	
2.a	$\hat{IEB} = \hat{IEA} = 90^{\circ}$ so $\hat{IEB} + \hat{IEA} = 180^{\circ}$ therefore the 3 points are collinear.	0.5	
2.b	By applying Pythagorean AB ² =100 then AB=10.		
3.a	AB BI AB		
3.b	$\frac{IB}{AB} = \frac{BE}{BI} \text{so} \frac{6}{10} = \frac{BE}{6} \text{thenBE} = 3.6(0.25) + (0.25)$	0.5	
3.c	AE = AB – BE =6.4(0.25) By applying Pythagorean in triangle IAE we get IE^2 = 23.04 therefore IE = 4.8(0.25)	0.5	
4. a	$\widehat{RFF} - \widehat{RFI} - 90^{\circ}(0.25) + (0.5)$		
4.b		$\frac{E}{R}$ 0.5	
5	Locating point L, AIBLis a rectangle, A, E, L and F are on the same circle of diameter $[AF](0.25) + (0.25) + (0.25) + (0.25)$	1	