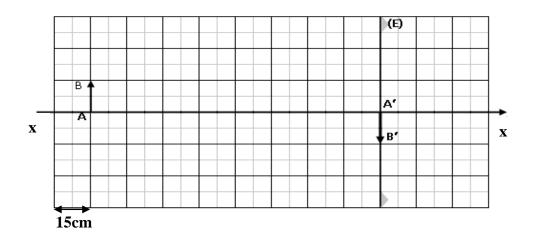
دورة العام 2015 الاستثنائية الخميس 13 آب 2015		امتحانات الشهادة المتوسطة	وزارة التربية والتعليم العالي المديرية العامة للتربية
			دائرة الامتحاتات
	الاسم:	مسابقة في مادة الفيزياء	

Cette épreuve est constituée de trois exercices obligatoires repartis sur deux pages. L'usage des calculatrices non programmables est autorisé.

المدة ساعة

Premier exercice: Détermination de la distance focale d'une lentille convergente (7 points)

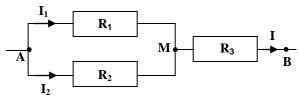

Le but de cet exercice est de déterminer la distance focale f d'une lentille convergente (L). Pour cela, on place un objet (AB) à une distance p de (L) perpendiculairement en A à son axe optique. De l'autre côté de la lentille, on place un écran (E), parallèlement à (AB) et à une distance p' de (L).

On règle les valeurs de p et p' de façon que l'image (A'B') de (AB) se forme nettement sur (E) et A'B' = AB.

- 1) Préciser la nature de l'image (A'B').
- 2) Déduire que l'image (A'B') est renversée par rapport à l'objet.

الرقم:

3) La figure ci-dessous montre (AB), (A'B'), l'écran (E) et l'axe optique x'x de la lentille (L).


- a) Reproduire, à la même échelle, la figure ci-dessus.
- **b**) Déterminer graphiquement la position du centre optique O de (L) puis représenter (L) sur la figure.
- c) Tracer le rayon émergent correspondant au rayon lumineux issu de B et parallèle à l'axe optique.
- d) Ce rayon émergent coupe l'axe optique en un point particulier M. Que représente M pour (L) ?
- e) Déterminer graphiquement p et p'.
- f) Comparer p et p'. Déduire la relation entre p et f.
- g) Déduire la valeur de f.

Deuxième exercice: Puissance électrique

(7 points)

Le but de cet exercice est de comparer la somme des puissances électriques consommées par un groupement de conducteurs ohmiques à celle consommée par le conducteur ohmique équivalent.

On considère pour cela le montage de la figure ci-contre. On donne : $R_1 = 60 \Omega$; $R_2 = 30 \Omega$; $R_3 = 20 \Omega$; $I_1 = 1 A$.

I-Puissance consommée par le groupement

- 1) Calculer la valeur de la tension U_{AM} aux bornes de R_1 .
- 2) Montrer que l'intensité du courant traversant R_2 est $I_2 = 2$ A.
- 3) Déduire la valeur de l'intensité I du courant traversant R₃.
- 4) Calculer la puissance électrique consommée par chacun des trois conducteurs ohmiques.
- 5) En déduire la puissance totale P_{totale} consommée par ces trois conducteurs.

II- Puissance consommée par le conducteur ohmique équivalent

- 1) Calculer la résistance R' du conducteur ohmique équivalent à R₁ et R₂
- 2) Montrer que la résistance du conducteur ohmique équivalent à R' et R_3 est $R_e = 40 \Omega$.
- 3) Calculer la puissance électrique $P_{\rm e}$ consommée par $R_{\rm e}$.

III- Comparaison des puissances électriques

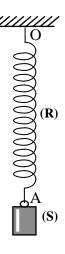
Comparer P_{totale} et P_e.

Troisième exercice : Intensité de la pesanteur sur la Lune. (6 points)

Le but de cet exercice est de vérifier expérimentalement la relation entre l'intensité de la pesanteur g_L sur la Lune et celle de l'intensité de la pesanteur g sur la Terre. Pour cela, on dispose d'un ressort (R) de constante de raideur k=50 N/m et d'un solide (S) de masse M. Prendre g=10 N/kg

Première expérience

A la surface de la Terre, on fixe l'extrémité O de (R) à un support et on accroche le solide (S) à son extrémité libre A.


À l'équilibre, l'allongement de (R) est $\Delta \ell_1 = 12$ cm.

- (S) est soumis à deux forces.
- 1) Donner le nom de chaque force.
- 2) Ecrire la relation vectorielle entre ces deux forces.
- 3) Déterminer la valeur de chaque force.
- 4) Déduire que M= 0,6 kg.

Deuxième expérience

La même expérience est réalisée à la surface de la Lune. À l'équilibre, l'allongement de (R) est $\Delta \ell_2 = 2$ cm.

- 1) Déterminer la nouvelle valeur de chacune des deux forces agissant sur (S).
- 2) Sachant que la masse de (S) ne varie pas, déduire la valeur de g_L.
- 3) Vérifier que $g_L = \frac{1}{6}g$.

مسابقة في مادة الفيزياء مشروع معيار التصحيح المدة ساعة

Premier exercice (7 points)

Partie de la Q.	Réponses	
1	L'image est réelle car elle est reçue sur un écran.	0.5
2	Car (A'B') est réelle.	0.5
3.a)	Reproduction.	0.5
3.b)	On relie B et B', l'intersection entre BB' et l'axe optique est O car tout rayon qui passe par le centre optique émerge de O sans déviation Ou bien (B,O et B' sont alignés)+ tracé	2
3.c)	Tracé	0,5
3.d)	M représente le foyer image de (L).	0.5
3.e)	$p = 4 \times 15 = 60 \text{ cm}, p' = 4 \times 15 = 60 \text{ cm}$	1
3.f)	p = p' = 60 cm. Puisque $p = p'$ donc $p = p' = 2f$	1
3.g)	$f = \frac{p}{2}$ donc $f = 30$ cm	0.5

	me exercice (7 points)	
Partie	Réponses	
de la Q.	-	
I. 1)	$U_{AM} = R_1 \cdot I_1 = 60 \times 1 = 60 \text{ V}$	1
I.2)	$U_{AM} = R_2 I_2 \implies I_2 = \frac{U_{AM}}{R_2} = \frac{60}{30} = 2 A$	0.5
I.3)	Loi des intensités des courants: $I = I_1 + I_2 \implies I = 3 \text{ A}$	0.5
I.4)	$P_1 = R_1 \cdot I_1^2 = 60 \cdot 1^2 = 60 \text{ W}$; $P_2 = R_2 \cdot I_2^2 = 30 \times 2^2 = 120 \text{ W}$; $P_3 = R_3 \cdot I_3^2 = 20 \times 3^2 = 180 \text{ W}$	1.5
I.5)	$P_{\text{totale}} = P_1 + P_2 + P_3 = 360 \text{ W}$	0.75
II. 1)	$\frac{1}{R'} = \frac{1}{R_1} + \frac{1}{R_2} \implies R' = \frac{60 \times 30}{60 + 30} = 20 \Omega$	1
II.2)	$Re = R' + R_3$ $\Rightarrow Re = 40 \Omega$	0.5
II.3)	$Pe = Re.I^2 = 40 \times 3^2 = 360 W$	0.75
II.4)	$Pe = P_{totale}$	0.5

Troisième exercice (6 points)

Partie de la Q.	Réponses	
I.1	\vec{P} : Poids de (S) \vec{T} : tension du ressort	0.5
I.2	$\vec{P} + \vec{T} = \vec{0}$	0.5
I.3	D'après la loi de Hooke $T=k$. $\Delta \ell_1$ donc $T=6$ N ; A l'équilibre : $P=T=6$ N	1.5
I.4	P = M.g; $M = 0.6 kg$	1
II.1	$T' = k. \ \Delta \ell_2 = 1 \ N$; $P' = T' = 1 \ N$	1
II.2	$P' = M.g_L \text{ donc } g_L = 1.66 \text{ N/kg}$	0.5
II.3	$\frac{g}{6} = 1.66 \text{ donc } g_{\text{M}} = \frac{g}{6}$	1