عدد المسائل : ست مسابقة في مادة: الرياضيات الاسم: المدة: أربع ساعات الرقم:

إرشادات عامة: - يسمح باستعمال آلة حاسبة غير قابلة للبرمجة او اختزان المعلومات أو رسم البيانات.

_ يستطيع المرشّع الإجابة بالترتيب الذي يناسبه (دون الإلتزام بترتيب المسائل الوارد في المسابقة)

I- (2 points)

In the space referred to a direct orthonormal system $(O; \vec{i}, \vec{j}, \vec{k})$, consider the points I (2, 1,2) and F(1, 1,1). Let (d) be the line defined by: x = 2m; y = m - 1; z = m + 2, where m is a real parameter. (P) is the plane determined by the line (d) and the point I.

- 1) Verify that x-y-z+1=0 is an equation of (P).
- 2) E is the orthogonal projection of I on (d). Find the coordinates of E.
- 3) Consider, in the plane (P), the circle (C) with center I, and tangent to (d).
- a- Prove that F is on (C).
- b- Write a system of parametric equations for the line (Δ) , the tangent at F to (C).

II-(3 points)

Consider two urns U and V such that:

- Urn U contains four white balls and two red balls.
- Urn V contains two white balls and three red balls.
- A- A player selects, randomly, one ball from the urn U and one ball from the urn V.

He scores +3 points for a red ball selected from urn U and +1 point for a red ball selected from urn V; he scores -1 point for a white ball selected from urn U and -2 points for a white ball selected from urn V.

Let X be the random variable that is equal to the algebraic sum of points scored by the player.

- 1) Find the four possible values of X and prove that the probability $P(X = 0) = \frac{2}{5}$.
- 2) Determine the probability distribution of X.
- B- In this part, the player selects at random, one ball from the urn U and puts it in the urn V. Then, he selects two balls simultaneously and randomly from the urn V.

Consider the following events:

- W: «the ball selected from the urn U is white»,
- D: «the two balls selected from the urn V have different colors»,
- 1) Verify that $P(D/W) = \frac{3}{5}$, then calculate $P(D \cap W)$.
- 2) CalculateP(D).
- 3) Knowing that the two balls selected from urn V have the same color, what is the probability that the ball selected from the urn U is white?

III- (2 points)

Consider the sequence (u_n) defined by $u_1 = \frac{1}{2}$ and for all natural numbers $n \ge 1$: $u_{n+1} = \frac{n+1}{2n}u_n$.

- 1) a- Use mathematical induction to prove that $u_n > 0$ for all $n \ge 1$,
 - b-Prove that the sequence (u_n) is decreasing. Deduce that (u_n) is convergent.
- 2) Let (v_n) be the sequence defined, for all $n \ge 1$, by $v_n = \ln\left(\frac{u_n}{n}\right)$.
- a- Prove that (v_n) is an arithmetic sequence whose common difference $d = -\ln 2$ and determine its first term.
- b- Express v_n in terms of n, then verify that $u_n = \frac{n}{2^n}$.

In the given figure:

- A and F are two fixed points with AF= 4.
- (d) is the line perpendicular to (AF) at A,
- N is a variable point on (d),
- (NS) is the line parallel to (AF),
- NFS is right triangle at F,
- M is the midpoint of [NS].

- b- Determine the vertex V of (P).
- 2) (Δ) is the parallel through F to (d) . E is a point on (Δ) so that FE = 4. a- Show that E is on (P).
 - b- Prove that (EA) is tangent to (P).

B-

The plane is referred to the direct orthonormal system $(V; \vec{i}, \vec{j})$ with $\vec{i} = \frac{1}{2} \overrightarrow{VA}$.

- 1)a-Verify that $y^2 = -8x$ is an equation of (P). b- Draw (P).
- 2) T is a point with affix z and L is a pointwith affix z' such that : $z' = 3z \overline{z}$.

Let z = x + iy and z' = x' + iy'. (x, y, x') and y' are real numbers)

- a- Express x' and y' in terms of x and y.
- b- As T varies on the circle with center O and radius 1, prove that L moves on an ellipse
- (E) having A and F as two of its vertices.

V- (3 points)

In the figure below, OABC is a direct square so that:

OA = 2, and $(\overrightarrow{OA}; \overrightarrow{OC}) = \frac{\pi}{2} [2\pi]$.

Let E be the symmetric of O with respect to A, F the symmetric of O with respect to Cand L the midpoint of segment [BC].

 \boldsymbol{S} is the similitude that maps \boldsymbol{O} onto \boldsymbol{E} and \boldsymbol{C} onto $\boldsymbol{O}.$

- 1) Calculate the ratio k and an angle α of S.
- 2) a- Determine the image of line (BC) under S .
- b- Prove that the image of the line (OB) under S is the line (EF).
 - c- Determine S(B), then S(L).
- 3) The complex plane is referred to a direct orthonormal system $\left(O; \frac{1}{2}\overrightarrow{OA}, \frac{1}{2}\overrightarrow{OC}\right)$.
- a- Write the complex form of S.
 - b- Deduce the affix of the center I of S.
 - c- Prove that I is the intersection point of (OL) and (EC).

VI- (7 points)

Α-

Consider the differential equation (E): y'' - 4y' + 4y = 4x - 4.

Let y = z + x.

- 1) Write the differential equation (E') satisfied by z and solve (E').
- 2) Determine the particular solution of (E) whose representative curve has at the pointwith abscissa 0 a tangent with equation y = x 1.

B-

Consider the function f defined on \Box by $f(x) = (2x-1)e^{2x} + x$ and denote by (C) its representative curve in an orthonormal system $(0; \vec{i}, \vec{j})$.

- (d) is the line with equation y = x.
- 1) a) Determine $\lim_{x\to +\infty} f(x)$ and $\lim_{x\to +\infty} \frac{f(x)}{x}$.
 - b) Study, according to the values of x, the relative positions of (C) and (d).
 - c) Show that (d) is an asymptote to (C) as x tends to $-\infty$.
- 2) a) Show that (C) has an inflection point whose coordinates are to be determined.
 - b) Set up the table of variations of f ' and deduce that f is strictly increasing on \square .
- 3) (C) intersects the x-axis at a point with abscissa k.
 - a) Verify that 0.4 < k < 0.5.
 - b) Plot(C) identifying its point of intersection with the y-axis.
- 4) Find, over \square , an antiderivative F of f.
- 5) f has an inverse function g on \square . Denote by (G) the representative curve of g.
 - a) Write an equation of (D), the tangentto (G) at the point with abscissa -1.
 - b) Prove that (G) has an inflection point S whose coordinates are to be determined.
 - c) Draw (G) in the same system as (C).
 - d) Let $E = \int_{-1}^{0} g(x)dx$. Express E in terms of k.

دورة العام 2015 العادية الأربعاء 10 حزيران 2015

امتحاناطلشهادة الثانوية العامة فرع العلوم العامة

وزارة التربية والتعليم العالي المديرية العامة للتربية دائرة الامتحانات

مسابقة في مادة: الرياضيات	سس التصحيح
المدة:أربع ساعات	•

_		Ç.,	
	Q1	Answers	M
	1	 Let A(0; -1; 2) be a point on (d) and let M(x; y; z) be a variable point in (P), then: AM.(IA×V_d) = 0 gives x-y-z+1=0. OR (d) lies in (P) since 2m-(m-1)-(m+2)+1=0 and I(2,1,2) is in (P) since 2-1-2+1=0 	1
-	2	$\begin{split} & E(2m,m-1,m+2) \in (d) \\ & \overrightarrow{IE} \Big(2m-2,m-2,m \Big) \text{and} \ \overrightarrow{V}_{(d)}(2,1,1) \\ & \overrightarrow{IE}.\overrightarrow{V}_{(d)} = 4m-4+m-2+m=0 \qquad m=1 So, E(2,0,3) \end{split}$	1
-	3a	Radius of the circle is IE = $\sqrt{2}$, IF= $\sqrt{1+0+1} = \sqrt{2}$	1
	3b	$\vec{V}_{\Delta} = \vec{IF} \wedge \vec{N_{p}} - \vec{i} - 2\vec{j} + \vec{k} \text{ therefore } (\Delta) : \begin{cases} x = -t + 1 \\ y = -2t + 1 \\ z = t + 1 \end{cases}$	1

Q	22	Answers	M
	1	The values of X are: $3+1=4$, $3-2=1$, $-1+1=0$ and $-1-2=-3$. $P(X=0) = P(W_U; R_V) = \frac{4}{6} \times \frac{3}{5} = \frac{2}{5}.$	0.5
A	2	$P(X=-3) = P(2W) = \frac{4}{6} \times \frac{2}{5} = \frac{4}{15}; P(X=1) = P(R_U; W_V) = \frac{2}{6} \times \frac{2}{5} = \frac{2}{15};$ $P(X=-3) = P(2W) = \frac{4}{6} \times \frac{2}{5} = \frac{4}{15}; P(X=1) = P(R_U; W_V) = \frac{2}{6} \times \frac{2}{5} = \frac{2}{15};$	1.5
		$P(X = 4) = P(R;R) = \frac{2}{6} \times \frac{3}{5} = \frac{1}{5}.$	
В	1	$P(D/W) = \frac{C_3^1 \cdot C_3^1}{C_6^2} = \frac{3}{5} \text{ and } P(D \cap W) = P(D/W) \cdot P(W) = \frac{3}{5} \cdot \frac{4}{6} = \frac{2}{5}$	2
Б	2	$P(D) = \frac{4}{6}.P(D/W) + \frac{2}{6}.P(D/R) = \frac{4}{6}.\frac{3}{5} + \frac{2}{6}.\frac{\mathbf{C}_{2}^{1} \cdot \mathbf{C}_{4}^{1}}{\mathbf{C}_{6}^{2}} = \frac{26}{45}$	1
	3	$P(W/\overline{D}) = \frac{P(W \cap \overline{D})}{P(\overline{D})} = \frac{P(W) - P(w \cap D)}{1 - P(D)} = \frac{12}{19}$	1

Q3	Answers	M
1a	$u_1 = \frac{1}{2} > 0$; Suppose $u_n > 0$, then $u_{n+1} = \frac{n+1}{2n} u_n > 0$.	1
1b	$\begin{aligned} u_{n+1} - u_n &= \frac{1-n}{2n} u_n \leq 0 \text{ ; hence} \left(u_n \right) \text{ is decreasing.} \\ \left(u_n \right) \text{ is decreasing and has a lower bound 0 then it is convergent.} \end{aligned}$	1
2a	$v_{n+1} = \ln\left(\frac{u_{n+1}}{n+1}\right) = \ln\left(\frac{1}{n+1} \times \frac{n+1}{2n}u_n\right) = \ln\left(\frac{1}{2} \times \frac{u_n}{n}\right) = v_n - \ln 2.$ $(v_n) \text{ is an arithmetic sequence with first term } v_1 = -\ln 2 \text{ and } d = -\ln 2.$	1
2b	$v_n = v_1 + (n-1)d = -n \ln 2.$ $\ln\left(\frac{u_n}{n}\right) = -n \ln 2 \Leftrightarrow \frac{u_n}{n} = e^{-n \ln 2} \Leftrightarrow u_n = \frac{n}{e^{n \ln 2}} = \frac{n}{\left(e \ln 2\right)^n} = \frac{n}{2^n}.$	1

Q4	Answers	M	
A1a	$MF = \frac{1}{2}SN = MN = d (M \rightarrow (d))$ hence M moves on (P).		
A1b	V is the midpoint of [FA].		
A2a	EF=4 equals distance from E to (d). Thus E is on (P).	0.5	
A2b	E' is the orthogonal p[rojection of E on (d). (EE') perpendicular to (d). (EA) is the bisector of FEE'. Therefore (EA) is tangent to (P).		
B1a	$P = 4 = FA$. Therefore, $y^2 = -8x$ (P)	0.5	
B1b	S D D D D D D D D D D D D D D D D D D D	0.5	

	x' + iy' = 3x + 3iy - x + iy	
B2a	$\int x' = 2x$	1
	$\int y' = 4y$	
	$x^{2} + y^{2} = 1$ then $\frac{x'^{2}}{4} + \frac{y'^{2}}{16} = 1$ is the equation of (E)	1.5
B2b	with $a = 4$ and $b = 2$. Therefore $A(2,0)$ and $F(-2,0)$	
	are 2 vertices of (E).	

Q5	Answers	M
1	$k = \frac{OE}{CO} = \frac{4}{2} = 2$, $\alpha = (\overrightarrow{OC}; \overrightarrow{EO}) = \frac{\pi}{2} \pmod{2\pi}$.	1
2a	S(C) = O then $S(BC)$) is the line passing in O and perpendicular to (BC) thus $S((BC)) = OC$.	0.5
2b	S((OB)) is the line passing in E and perpendicular to (OB) thusitis (EB). But E, B and F are collinearsoitis (EF).	1
2c	$S(B) = S((OB) \cap (BC)) = (EF) \cap (OC) = F$ L is the midpoint of [BC] so S(L)=C since C is the midpoint of [OF]	1
3a	z' = 2iz + b but S(C) is O thus b=4. Therefore $z' = 2iz + 4$.	1
3b	$z_{I} = \frac{4}{1 - 2i} = \frac{4}{5} + \frac{8}{5}i$	0.5
3c	$z_{\overline{\text{IE}}} = -\frac{4}{5}z_{\overline{\text{EC}}}$ and $z_{\overline{\text{OI}}} = \frac{4}{5}z_{\overline{\text{OL}}}$, so I is the intersection of (EC) and (OL).	1

Q	<u> 26</u>	Answers	M
A	1	$z'' - 4z' + 4z = 0$; $z = (ax + b)e^{2x}$	1
A	2	$y(0) = -1$ and $y'(0) = 1$; $a = -2$ et $b = 1$; $f(x) = x + (2x - 1)e^{2x}$	1.5
	1a	$\lim_{x \to +\infty} f(x) = +\infty \text{ and } \lim_{x \to +\infty} \frac{f(x)}{x} = +\infty$	1
В	1b	$f(x) - x = (2x - 1)e^{2x}; \text{ if } x < \frac{1}{2} \text{ then (C) is below (d)};$ $\text{if } x > \frac{1}{2} \text{ then (C) is above (d)}; \text{if } x = \frac{1}{2} \text{ (d) intersects (C)}.$	1
	1c	$\lim_{x \to -\infty} f(x) - x = \lim_{x \to -\infty} (2x - 1)e^{2x} = 0$. So : y = x is an oblique asymptote at $-\infty$	0.5

2a	$f''(x) = 4(2x+1)e^{2x}$ $\frac{x - oo -0.5 + oo}{f''(x) - 0 +}$ (C) Thus $I\left(-\frac{1}{2}; -\frac{e+4}{2e}\right)$ is a point of inflection.	1
2b	$\frac{x - oo -1/2 + oo}{f'(x)}$ $f(x) = \frac{e-2}{2} > 0 \text{ so f is strictly increasing over } \square.$	1
3a	Comme $f(0,4).f(0,5) < 0$ donc $0,4 < x < 0,5$.	0.5
3b	2 (C) 1 (G) -2 -1 0 k 1 2	1.5
4	$F(x) = \frac{x^2}{2} + e^{2x}(x-1) + c$	1
5a	(D): $y = x + 1$	1
5b	By symmetrywith respect to y=x, $H\left(-\frac{e+4}{2e}; -\frac{1}{2}\right)$ point of inflection of (G)	0.5
5c	(G0 issymmetric of (C) with respect to y=x.See figure	1
5d	$E = \int_{-1}^{0} g(x)dx = \int_{0}^{k} -f(x)dx = -F(k) + F(0) = -\frac{k^{2}}{2} - (k-1)e^{2k} + 1.$	1.5