الاسم:	مسابقة في مادة الرياضيات	عدد المسائل :ستة
الرقم:	المدة ساعتان	

ارشادات عامة: - يسمح باستعمال آلة حاسبة غير قابلة للبرمجة أو اختزان المعلومات او رسم البيانات. - يهتطيع المرشح الإجابة بالترتيب الذي يناسبه دون الالتزام بترتيب المسائل الواردة في المسابقة.

I - (2 points)

In the following table, only one of the proposed answers to each question is correct. Write the number of the question and its corresponding answer. Justify your choice.

Number	Question	Proposed answers		
Nullibei	Question	a	b	c
1	Let $P(x) = 3x^2 - 2x + 2\sqrt{3}$, then $P(\sqrt{3}) =$	9	0	$9+4\sqrt{3}$
2	The original price of an article is 5 200 L.L. After a discount of 15%, the new price will be:	5 980 L.L	780 L.L	4 420 L.L
3	x is the measure of an acute angle so that $\sin x = \frac{2}{5}$, then $\cos x =$	$\frac{3}{5}$	$\frac{4}{5}$	$\frac{\sqrt{21}}{5}$
4	If $2x-3>5$, then:	x+4>0	-3x+12<0	x < -4

II - (2.5 points)

Consider the three numbers A, B and C so that:

A =
$$\frac{8}{3} + 5 \div (1 - \frac{2}{5})$$
; B = $\sqrt{2 - \frac{6}{5}} \times \sqrt{2 + \frac{6}{5}}$ and C = $\frac{2\sqrt{75} - \sqrt{48}}{5\sqrt{2} \times \sqrt{54} - 5\sqrt{27}}$

In what follows, the steps of calculation must be shown.

- 1) Show that A is a natural number.
- 2) Write B in the form of a fraction in its simplest form.
- 3) Prove that C is decimal
- 4) Prove that B+C=2.

III - (2 points)

- 1) Solve the following system: $\begin{cases} x + y = 35 \\ 2x 3y = 0 \end{cases}$
- 2) **Find**, with justification, two natural numbers such that their sum is 35 and the double of one of them is the triple of the other.

IV- (3.5 points)

Given the following algebraic expression:

$$E(x) = (3x-4)^2 - (3x-4)(x+2).$$

- 1) a. Show that $E(x) = 6x^2 26x + 24$
 - **b. Solve** the equation E(x) = 24.
- 2) Factorize E(x).
- 3) In the adjacent figure:

ABCD is a square with side 3x-4.

AMND is a rectangle such that DN = x + 2. (x > 3)

- **a.** Express, in terms of x, the area S of the square ABCD and S' the area of the rectangle MBCN.
- **b.** Determine x so that S = 4S'.

V- (5 points)

In an orthonormal system of axes x'Ox; y'Oy, consider the points A(3;3), B(0;-3) and C(-6;0).

- 1) Plot the points A, B and C.
- 2) Verify that y = 2x 3 is the equation of the line (AB).
- 3) Calculate the slope of the line (BC).

Deduce that (AB) and (BC) are perpendicular.

- 4) Show that ABC is a right isosceles triangle.
- 5) Let **D** be the point defined by $\overrightarrow{AD} = \overrightarrow{BC}$.
 - **a.** Verify that the coordinates of **D** are (-3,6).
 - **b. Show** that the quadrilateral ABCD is a square.
- 6) Let **E** be the symmetric of D with respect to A and (**G**) the circle circumscribed about triangle **CDE**.
 - **a.** Calculate the coordinates of E.
 - **b.** Calculate the coordinates of I the center of circle (G).
 - **c. Determine** the equation of the tangent at D to the circle (G).

In the adjacent figure, consider a circle (C) with center O and diameter AB = 6 cm.

Let **D** be a point on (C) such that BD = 3.6 cm.

Denote by **M** the midpoint of [OB].

The parallel through M to (BD) intersects [AD] at J.

- 1) Copy the figure, it will be completed in the following parts.
- 2) Show that ABD is a right triangle, and then verify that AD = 4.8 cm.
- 3) Verify that AJ = 3.6 cm and calculate JM.
- 4) The tangents to (C) at A and D intersect at L. The two lines (AD) and (LO) intersect at F.
 - a. Calculate OF.
 - **b.** Prove that the two triangles OFA and OAL are similar then Calculate AL.
 - c. Calculate, rounded to the nearest degree, the measure of angle $\overline{A}LD$.

مشروع أسس التصحيح

مشروع اسس التصحيح				
Part of the	Question I	Grade		
ques.	$P(\sqrt{3}) = 9$. The answeris(a)	0.5		
2	The price will be 5 200 x $0.85=4420$. So the answeris (c)	0.5		
3	cos ² x = 1 - $\frac{4}{25}$ = $\frac{21}{25}$. So the answeris(c)			
4		0.5		
4	$\mathbf{Question II}$	0.5		
1		0.5		
2	$A = \frac{8}{3} + 5 \div (\frac{3}{5}) = \frac{8}{3} + \frac{25}{3} = 11$ $B = \sqrt{4 - \frac{36}{25}} = \sqrt{\frac{100 - 36}{25}} = \frac{8}{5}$	1		
3	$C = \frac{10\sqrt{3} - 4\sqrt{3}}{5 \times 2 \times 3\sqrt{3} - 15\sqrt{3}} = \frac{6\sqrt{3}}{15\sqrt{3}} = \frac{2}{5} \text{ thus } B + C = 2$	1		
	Question III			
1	x = 21 and $y = 14$	1		
2	x and y are two natural numbers, so the system is: $\begin{cases} x + y = 35 \\ 2x = 3y \end{cases}$ hence x=21 and y = 14	1		
	Question IV			
1.a	$E(x) = 6x^2 - 26x + 24$	0.5		
1.b	$E(x) = 24 \text{ then } x=0 \text{ or } x=\frac{13}{3}$	0.5		
2	E(x) = (3x-4)(3x-4-x-2) = 2(3x-4)(x-3).	0.5		
3.a	$S=(3x-4)^2$ and $S'=(3x-4)^2-(3x-4)(x+2)$	1		
3.b	S= 4S' then $x = \frac{4}{3}$ rejected or $x = 4$ acceptable.	1		
	Question V			
1	Figure: A, B andC	0.5		
2	Equation of (AB) is $y = 2x-3$	0.5		
3	$a_{(BC)} = \frac{-1}{2}$ then (AB) and (BC) are perpendicular (product of theirslopes = -1)	0.75		

4.	(AB) perpendicular to (BC), AB = $3\sqrt{5}$; BC = $3\sqrt{5}$ then ABC is right isosceles.	0.5
5.a	$\overrightarrow{AD} = \overrightarrow{BC} \text{ then } D(-3;6)$	0.5
5.b	$\overrightarrow{AD} = \overrightarrow{BC}$ then ABCD is a parm	0. 5
	(BC) perpendicular to (AB)andAB = BC thenitis a square.	
6. a	E(9, 0).	0.5
6. b	$I(\frac{3}{2},0)$	0.5
6.c	$a_{\text{(ID)}} = -\frac{4}{3}$ so, the slope of the tangent $=\frac{3}{4}$ and the equation of the tangent is $y = \frac{3}{4}x + \frac{33}{4}$.	0.75
	1 1	
	Question VI	
1	A O M	0.5
2	ABD is right at D sinceitisinscribed in a (C) of diameter [AB] $AD^2 = 36-12.96 = 23.04$ hence $AD = 4.8$ cm.	0.75
3	Using Thales', $\frac{AJ}{AD} = \frac{AM}{AB} = \frac{JM}{BD}$ then AJ=3.6cm and JM=2.7cm	1
4.a	F midpoint of [AD] and O midpoint of [AB] then $OF = \frac{1}{2}BD$ consequently $OF = 1.8$ or	0.5
4.b	Θ commonangle, $\Theta AL = \Theta FA = 90^{\circ} \frac{OF}{OA} = \frac{AF}{LA} = \text{ then } AL = 4$	1.25
5.a	$\tan \Theta LA = \frac{3}{4} \text{ then } \Theta LA = 37^{\circ} \text{, so } ALD = 74^{\circ}$	1