دورة سنة 2013 العادية	القبهادة المتوسطة	وزارة التربية والتعليم العالي المديرية العامة للتربية دائرة الامتحانات
וצווים:	مسابقة في مادة الرياضيات	عدد المسائل ستة
الرقم:	المدة: ساعتان	

ملاحظة: يسمح باستعمال آلة حاسبة غير قابلة للبرمجة أو اختزان المعلومات أو رسم البيانات. يستطيع المرشح الإجابة بالترتيب الذي يناسبه (دون الالتزام بترتيب المسائل الوارد في المسابقة)

I- (2 points)

The following 3 questions are independent of each other:

(All steps of calculation must be shown in each exercise)

1) Given:
$$A = \frac{5\sqrt{18} - 2\sqrt{98}}{2\sqrt{3} \times \sqrt{24} - 4\sqrt{2}}$$
.

- a. Write A as a fraction in its simplest form.
- b. Write A in scientific notation.
- 2) α is an acute angle. Prove that : $(1-\sin^2\alpha)\cdot \tan^2\alpha = \sin^2\alpha$.
- 3) Determine the real number x so that the following table represents a proportion:

$3 + \sqrt{5}$	Х
$\frac{7}{5}$	$3-\sqrt{5}$

II- (3 points)

40 students were surveyed about the number of books they read last month.

The following table represents the results of the survey:

Number of read books	0	2	4	6	7	Total
Frequency	2	7	10	9	12	40
Relative frequency in%			25			100
Central angle of a circle graph			90°			360°

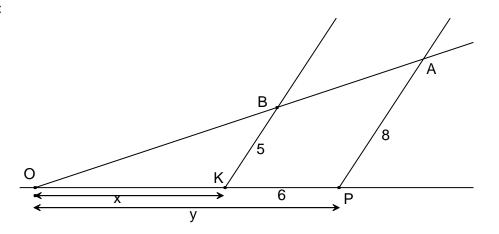
- 1) Determine the mean of this series.
- 2) Copy the table above, then complete it.
- 3) What is the number of students who have read at least 6 books?

III- (3 points)

Given that
$$A(x) = (2x-3)^2 - (x-6)^2$$
 and $B(x) = 2(x-3)^2 + 9 - x^2$.

- 1) a. Expand and reduce A(x).
 - b. Calculate A $(1+\sqrt{2})$. Write the answer in the form $a+b\sqrt{2}$ where a and b are two integers.
- 2) Factorize A(x).
- 3) Verify that B(x) = (x-3)(x-9).

4) Let
$$F(x) = \frac{A(x)}{B(x)}$$


- a. For what values of x, is F(x) defined?
- b. Simplify F(x), then solve the equation F(x) = -1.

IV- (2 points)

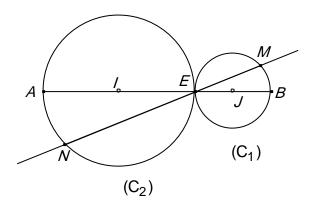
1) Solve the following system, showing the calculation details :

$$\begin{cases} x - y = -6 \\ 8x - 5y = 0 \end{cases}$$

- 2) In the opposite figure, the unit of length is the centimeter:
 - The points O, K and P are collinear
 - The points O, B and A are collinear
 - (KB) and (PA) are parallel
 - OK = x, OP = y, KB=5, KP =6 and PA=8.

Calculate the length OP.

V-(5.5 points)


In an orthonormal system of axes x'Ox; y'Oy, where the unit of length is the centimeter, consider the line (d) with equation y = -x - 4 and the points A(-1; -3), B(-7; 3) and C(3; 1).

- 1) a. Verify that A and B are two points on (d).
 - b. Plot the points A, B and C. Draw (d).
- 2) a. Calculate BC.
 - b. Knowing that AB = $6\sqrt{2}$ and AC = $4\sqrt{2}$, prove that ABC is a right triangle.
- 3) Let J be the center of the circle circumscribed about the triangle ABC. Calculate the coordinates of J.
- 4) Prove that the line (d') with equation y = x + 4 is the perpendicular bisector of [AB].
- 5) a. Calculate the coordinates of the vector \overrightarrow{BC} .
 - b. Let D be the translate of A under the translation with vector \overrightarrow{BC} . Calculate the coordinates of D.
- 6) Let A' be the symmetric of A with respect to J.
 - a. Prove that ABA'C is a rectangle.
 - b. Prove that C is the midpoint of [DA'].

VI- (4.5 points)

In the opposite figure:

- A,E and B are three collinear points
- AE = 8 and EB = 4
- (C₁) is the circle with diameter [EB] and center J
- (C₂) is the circle with diameter [EA] and center I
- M is a variable point on (C₁)
- The line (ME) intersects (C_2) at another point N.

- 1) Copy this figure.
- 2) Show that the lines (MB) and (NA) are parallel.
- 3) Prove that the triangles ANE and BME are similar. Determine the ratio of similarity.
- 4) Let P be the point defined as $\overrightarrow{MP} = \overrightarrow{ME} + \overrightarrow{MB}$.
 - a. Prove that the quadrilateral EPBM is a rectangle.
 - b. Deduce that P is a point on (C_1) .
- 5) Denote by K the intersection point of (ME) and (IP). Prove that [MK] is a median in the triangle IMP.
- 6) The lines (BP) and (AN) intersect at L.

As M moves on (C_1) , prove that L moves on a circle with diameter to be determined.

توزيع علامات مسابقة الرياضيات

2013 العادية

Qu	estions	Answers Keys			
I	1.a	$A = \frac{5\sqrt{18} - 2\sqrt{98}}{2\sqrt{3} \times \sqrt{24} - 4\sqrt{2}} = \frac{15\sqrt{2} - 14\sqrt{2}}{12\sqrt{2} - 4\sqrt{2}} = \frac{1}{8}$			
	1.b	$A=0.125=1.25\times10^{-1}$			
	2	$\tan^2 \alpha = \frac{\sin^2 \alpha}{\cos^2 \alpha}, (1 - \sin^2 \alpha) = \cos^2 \alpha.$ Hence $\tan^2 \alpha (1 - \sin^2 \alpha) = \sin^2 \alpha.$			
	3	$x = \frac{\left(3 + \sqrt{5}\right)\left(3 - \sqrt{5}\right)}{\frac{7}{5}} = \frac{20}{7}$	0.5		
	1	$\overline{X} = \frac{0 \times 2 + 2 \times 7 + 4 \times 10 + 6 \times 9 + 7 \times 12}{40} = 4.8$	0.75		
II	2	Number of read books 0 2 4 6 7 Total Frequency 2 7 10 9 12 40 % Relative frequency 5 17.5 25 22.5 30 100 Central angle 18° 63° 90° 81° 108° 360°	2		
	3	The number of students is 21	0.25		
	1. a	$3x^2 - 27$	0.5		
	1.b	$6\sqrt{2}-18$			
	2	(2x-3-x+6)(2x-3+x-6) = 3(x-3)(x+3)			
III	3	$B(x) = 2(x-3)^2 - (x^2-9) = (x-3)[2(x-3) - (x+3) = (x-3)(x-9)]$			
	4. a	$F(x)$ is defined for $x \neq 3$ and $x \neq 9$			
	4. b	$F(x) = \frac{3(x+3)}{x-9} ; \frac{3(x+3)}{x-9} = -1; \text{ then } 4x = 0; x = 0$			
	1	$\begin{cases} x - y = -6 \\ 8x - 5y = 0 \end{cases}, \dots, x=10, y=16$	1		
IV	2	Refer to Thales: $\frac{x}{y} = \frac{5}{8}$ and PK=6: y-x=6 So, we get the given system. OP = y = 6 .or	1		
	1.a	The coordinates of A and B verify the equation of (d).	0.5		
V					

	1.b	Figure A, B, C and (d) A' 7 6 6 B 3	0.75		
		-8-7-6-5-4-3-2-1 ₀ 1 2 3 4 5 6 7 8 9 10 x A 3 -8 -7 -6 -5 4 3 -2 -1 ₀ 1 2 3 4 5 6 7 8 9 10 x			
	2.a	$BC = \sqrt{104} = 2\sqrt{26}$	0.5		
	2.b	$BC^2=AB^2+AC^2$; ABC is right.	0.5		
	3	$x_{J} = \frac{-7+3}{2} = -2, y_{J} = \frac{3+1}{2} = 2 ; J(-2;2).$			
	4	The perpendicular bisector of [AB] is perpendicular to [AB] at its midpoint (-4; 0) . Its slope =1 and its equation is $y = x + 4$.			
-	5.a	$\overrightarrow{BC}(10;-2)$			
	5.b	$\overrightarrow{AD} = \overrightarrow{BC}, \ D(9;-5)$			
	6.a	ABA'C parallelogram + right angle: rectangle.			
	6.b	A',, C and D are collinear. CA'=CD or			
	1	A E B CZ]	0.25		
VI	2	(MB) and (NA) are perpendicular to (MN).	0.5		
	3	$BME = ENA = 90^{\circ} AEN = MEB, \frac{EN}{EM} = \frac{EB}{EA} = \frac{1}{2}$	1		
-	4.a	EPBM is a parallelogram+ right angle: rectangle	0.5		
	4.b	BPE is right, [EB] diameter then P is a point on (C ₁)	0.5		
	5	In the triangle IMP, [MK] is a median	0.75		
	6	(BP) is perpendicular to (MB) then perpendicular to (AN) so $\overline{A}LB = 90^{\circ}$ and L moves on the circle with diameter [AB].	1		