دورة العام ٢٠١٩ العاديّـة السبت ٢٢ حزيران ٢٠١٩ مكيّفة

امتحانات الشهادة الثانوية العامّة فرع العلوم العامّة

وزارة التربية والتعليم العالي المديرية العامة للتربية دائرة الامتحانات الرسمية

الاسم:	مسابقة في مادة الرياضيات	عدد المسائل: ست
• [_ <u> </u>	
الرقم:	المدة: أربع ساعات	
'حریم ا	المدار اربع ساحت	

ملاحظة: - يسمح باستعمال آلة حاسبة غير قابلة للبرمجة او اختزان المعلومات او رسم البيانات. - يستطيع المرشّح الإجابة بالترتيب الذي يناسبه (دون الالتزام بترتيب المسائل الواردة في المسابقة).

مسابقة في مادة الرياضيات المدة: أربع ساعات (باللغة الإنكليزية)

•••••	• • • • • • • • • • • • • • • • • • • •	•••••			الأسم:
					,
					,
		•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	الرقم:

I- (2 points)

In the table below, **only one** of the proposed answers to each question **is correct.**

Write down the number of each question and give, with justification, the answer corresponding to it.

Nº	Questions	Answers	
11	Questions	a	b
1	z is a complex number. One of the roots of the equation $z^4 + z^2 - i\sqrt{3} = 0$ is	$\mathrm{e}^{\mathrm{i} rac{\pi}{6}}$	$\mathrm{e}^{^{-\mathrm{i}rac{\pi}{6}}}$
2	Denote by f the function defined on \mathbb{R} as $f(x) = \frac{1}{x^2 + 4x + 8}.$ An antiderivative of f is	$\frac{1}{2}\arctan\left(\frac{x+2}{2}\right)$	$\frac{1}{4}\arctan\left(\frac{x+2}{2}\right)$
3	m is a real number (m > 1). If $J = \int_{m}^{m+1} \frac{1}{x} dx$, then J belongs to the interval	[m, m+1]	$\left[\frac{1}{m+1},\frac{1}{m}\right]$
4	z is a complex number. If $z = 1 + \cos \theta + i \sin \theta$, with $\pi < \theta < 2\pi$, then $ z =$	$2\cos\left(\frac{\theta}{2}\right)$	$-2\cos\left(\frac{\theta}{2}\right)$

II- (2 points)

In the space referred to an orthonormal system $(O; \vec{i}, \vec{j}, \vec{k})$, consider the plane (P) with

equation $\mathbf{x} + \mathbf{z} = \mathbf{0}$ and the line (d) with **parametric equations** $\begin{cases} \mathbf{x} = -\mathbf{t} + 1 \\ \mathbf{y} = -2\mathbf{t} \\ \mathbf{z} = 3\mathbf{t} + 1 \end{cases}$

Page 2 of 9

- 1) Calculate the coordinates of point A, the intersection of (d) and (P).
- 2) The point B(1, 0, 1) is **on** (d).
 - a-**Prove that** O is the <u>orthogonal projection of B on (P).</u>
 - b-**Deduce** a <u>system of parametric equations</u> of the line (Δ), the orthogonal projection of (d) on (P).
- 3) The point J(-5, 2, 5) is on (P).

Calculate the volume of the tetrahedron OBJA.

- 4)In the plane (P), consider the hyperbola (H) with **foci O and A** and eccentricity e = 3.
 - a-Verify that the point I(1, 1, -1) is the center of (H).
 - b-Verify that the coordinates of S and G, are S $(\frac{4}{3}, \frac{4}{3}, \frac{-4}{3})$ and G $(\frac{2}{3}, \frac{2}{3}, \frac{-2}{3})$

III- (3 points)

Consider two fair cubic dice.

The faces of each die are numbered from 1 to 6.

The two dice are rolled.

Denote by X the random variable that is defined as follows:

- if the two numbers shown on the dice are different, then X is equal to the greater between them;
- if the two numbers shown on the dice are equal, then X is equal to one them.

For example,

- if the two numbers shown on the dice are 2 and 3, then X=3
- if the two numbers shown on the dice are 4 and 4, then X = 4

1)a- Calculate the probabilities P(X = 1) and P(X = 2).

b- **Prove** that
$$P(X \le 3) = \frac{1}{4}$$
.

2) In this part, consider an urn U that contains 6 balls: 4 red and 2 blue.

The two dice are rolled:

- if $X \le 3$, then 3 balls are **randomly and simultaneously** selected from U;
- if X > 3, then 3 balls are selected randomly and successively with replacement from U.

Consider the following events:

S: "The 3 selected balls have the **same color**"

a-Calculate:

$$P(S/A)$$

-
$$P(A \cap S)$$
.

b-Verify that
$$P(\overline{A} \cap S) = \frac{1}{4}$$

Calculate P(S).

c-Knowing that X > 3, **calculate** the probability that the <u>three selected</u> <u>balls do not have the same color</u>.

IV- (3 points)

In the below figure,

- F and F' are two fixed points so that FF' = 2.
- N is a variable point on the circle with center F' and radius 4.
- The perpendicular bisector of [NF] intersects [F'N] at M.
- B is a fixed point so that BF'F is an equilateral triangle.

- 1)a- Show that MF + MF' = 4.
 - b- **Deduce that** M moves on a conic (E) whose nature, foci and center O are to be determined.
- 2)Let A be the symmetric of O with respect to F.
 - a-Show that A is one of the vertices of (E).
 - b-Verify that (OB) is the <u>non-focal axis</u> of (E)

Verify that B is <u>one of the vertices</u> of (E).

- c-**Draw** (E).
- 3) The plane is referred to a direct orthonormal system $(O; \vec{i}, \vec{j})$ with $\vec{i} = \overrightarrow{OF}$.
 - a- Verify that $\frac{x^2}{4} + \frac{y^2}{3} = 1$ is an equation of (E).
 - b- Write an equation of (d) the directrix of (E) associated to F.
 - c- Let $L(\alpha,\beta)$ be a point on (E) where α and β are two real numbers with $\beta \neq 0$.
 - Verify that the equation of the tangent (T) to (E) at L

is
$$\frac{\alpha x}{4} + \frac{\beta y}{3} = 1$$
.

V- (3 points)

In the figure below;

- OACD is a direct square with center E and side 2.
- F is the symmetric of C with respect to D.
- B is the symmetric of O with respect to D.

Denote by S the direct plane similitude of center O that maps A onto B.

Part A

1)a- Calculate the ratio k and an angle α of S.

b- **Verify** that S(E) = F.

c- **Prove** that the <u>triangle OBF is right isosceles</u>.

2)Consider the direct plane similitude $S'\!\left(E,2,\!\frac{\pi}{2}\right)$ and the

transformation $h = S \circ S'$.

Denote by W the center of h. Show that $\overrightarrow{WF} = -4 \overrightarrow{WF}$.

Part B

The plane is referred to a direct orthonormal system $\left(O;\vec{u},\vec{v}\right)$ with

$$\vec{u} = \frac{1}{2} \overrightarrow{OA}$$
.

- 1) Show that the <u>complex form</u> of h is z' = -4z + 2 + 6i and deduce the affix of W.
- 2) For all $n \in \mathbb{N}$, consider the numerical sequence (d_n) defined as $d_n = WE_n \ \text{ where } E_0 = E \ \text{and } \ E_{n+1} = h(E_n).$

a-Verify that
$$d_0 = \frac{\sqrt{10}}{5}$$
.

- b-Show that (d_n) is a geometric sequence of common ratio 4.
- c-**Determine** the <u>number of points</u> E_n such that $d_n < 2019$.

VI- (7 points)

Part A

Consider the differential equation (E): $y'' - 2y' + y = e^{2x}$ and let $y = z + e^{2x}$.

- 1) Write a differential equation (E') satisfied by z.
- 2)**Determine** the <u>general solution</u> of (E'). **Determine** the general solution of (E).
- 3) **Determine** the <u>particular solution</u> of (E) whose representative curve, in an orthonormal system, has at the point A(0, -2) a tangent parallel to the x-axis.

Part B

Let f be the function defined on \mathbb{R} as $f(x) = e^{2x} + (x-3)e^{x}$.

Denote by (C) the representative curve of f in an orthonormal system $(0; \vec{i}, \vec{j})$.

- 1) **Determine** $\lim_{x \to +\infty} f(x)$ and $\lim_{x \to +\infty} \frac{f(x)}{x}$.
- 2) **Determine** $\lim_{x\to\infty} f(x)$ and **deduce** an asymptote to (C).
- 3) Let g be the function defined on \mathbb{R} as $g(x) = x 2 + 2e^x$.
 - a-Set up the table of variations of the function g.
 - b-Calculate g(0) then **deduce**, according to the values of x, the sign of g(x).
- 4) **Verify that** $f'(x) = e^x g(x)$ and set up the table of variations of the function f.
- 5) Show that the equation f(x) = 0 has, on \mathbb{R} , a unique root α . Verify that $0.7 < \alpha < 0.8$.

- 6)**Draw** the curve (C).
- 7)a- **Prove that** f has, over $[0, +\infty[$, an inverse function f^{-1} and **determine** its domain of definition.
 - b- Draw the representative curve (C') of f^{-1} in the same system $(O; \vec{i}, \vec{j})$.
 - c- **Calculate**, in terms of α , the area of the region bounded by (C'), the x-axis and the y-axis.

Part C

Let h be the function given by as $h(x) = \arcsin(f^{-1}(x))$.

Show that the domain of definition of the function his $[-2, e^2 - 2e]$.