المادة: الكيمياء الشهادة: المتوسطة نموذج: رقم ٣-ـ المدة: ساعة واحدة

نموذج مسابقة (يراعي تعليق الدروس والتوصيف المعدّل للعام الدراسي 2016-2017 حتى صدور المناهج المطوّرة)

Cette épreuve est constituée de trois exercices. Elle comporte deux pages numérotées 1 et 2. L'usage d'une calculatrice non programmable est autorisé.

Exercice 1 (7 points)

Polychlorure de vinyle (PVC)

Le polychlorure de vinyle est le plastique connu sous le nom de PVC. Ce polymère est largement utilisé pour les tuyaux de canalisation.

- 1. Le document-1 présente la composition des atomes de la molécule de chlorure de vinyle.
- **1.1** Recopier et compléter le tableau suivant :

Atomes	Н	С	Cl
Nombre de neutrons			
Configuration électronique			

- 1.2 Ecrire la représentation de Lewis de l'atome de carbone.
- **1.3** Pour les affirmations suivantes, indiquer la vraie réponse. Justifier.
- **1.3.1** Si la charge électrique relative d'un électron = 1-,

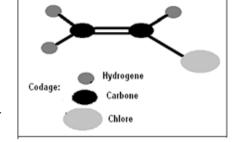
la charge électrique relative du nuage électronique de l'atome de carbone est:

i. -6 +6

1.3.2 La valence de l'atome de carbone est :

0 iii.

Nombre de protons


16

2

-12

- 2. En se référant au document-2 qui représente le modèle moléculaire du chlorure de vinyle.
- **2.1** Ecrire la formule structurale développée du chlorure de vinyle.
- 2.2 Donner la formule moléculaire du chlorure de vinyle.
- **2.3** Préciser le type de la liaison entre les deux atomes de carbone.
- 3. Le polychlorure de vinyle PVC, de formule chimique —(CH₂-CHCl)_n est obtenu par la réaction de polymérisation du chlorure de vinyle

(monomère). **3.1** Donner la formule semi-développée de l'unité répétitive.

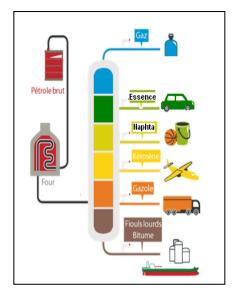
Document-1

Document -2

- 3.2 Ecrire, en utilisant les formules structurales semi-développées, l'équation de la polymérisation du chlorure de vinyle.

Exercice 2 (7 points)

Raffinage du pétrole


Le pétrole brut est traité dans la raffinerie et les différents constituants sont séparés en coupes. Chacune de ces coupes contient un mélange d'hydrocarbure.

- 1. .En se référant au document-1 :
- 1.1 Nommer la technique utilisée pour séparer les constituants du pétrole brut en différentes coupes.
- **1.2** Indiquer le constituant récupéré le premier et celui récupéré le dernier.

- **2.1.** Le propane C_3H_8 a une température d'ébullition de 36°C, alors que la température d'ébullition du pentane C_5H_{12} est -42°C.
- **2.2** L'heptane C₇H₁₆, de température d'ébullition de 98°C, se trouve à l'état liquide à la température ambiante (25°C).
- **3.** Le propane C₃H₈ brûle complètement dans le dioxygène de l'air. Ecrire l'équation-bilan équilibrée de la combustion complète du propane.
- **4.** Le craquage d'heptane (C_7H_{16}) produit l'éthène et l'hydrocarbure (A) de formule C_xH_y selon l'équation de la réaction suivante:

$$C_7H_{16} \rightarrow C_2H_4 + C_xH_v$$

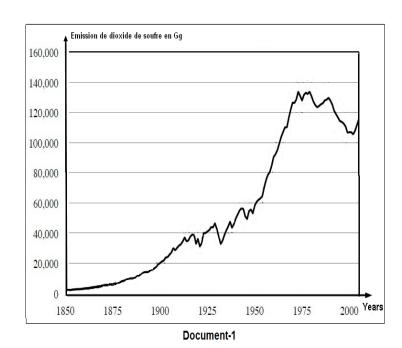
- **4.1.** Montrer que la formule moléculaire de l'hydrocarbure (A) est C₅H₁₂.
- **4.2.** Ecrire toutes les formules semi-développées possibles de (A) et donner le nom de chacune d'elles.
- **4.3.** Préciser la relation trouvée entre les différentes structures possibles de (A).

Document-1

Exercice 3 (6 points)

Pollution par le dioxyde de soufre

Le dioxyde de soufre (SO₂) est émis principalement par l'utilisation de combustibles fossiles soufrés (charbon, fioul, gazole) et certains procédés industriels. Ce gaz est irritant, notamment pour l'appareil respiratoire. En outre, le SO₂ se transforme en acide sulfurique qui conduit à la pluie acide. Les effets néfastes causés par la pluie acide sont l'appauvrissement des milieux naturels et la détérioration des bâtiments.


Le document-1 présente le graphe qui représente la variation de la quantité de SO₂ en gigagramme (Gg) entre les années 1850 et 2000.

1. En se référant au texte, relever

- **1.1** Un effet néfaste qui peut être causé par la pluie acide.
- **1.2.** La source majeure de la production de dioxyde de soufre.
- **1.3** Un effet nocif de dioxyde de soufre sur la santé humaine.

2. En se référant au document-1:

- **2.1.** Donner la quantité de dioxyde de soufre produite en 1975 et celle dégagée en 2000.
- **2.2** Préciser comment a évolué la pollution de l'air par le dioxyde de soufre dans l'intervalle de temps (1975-2000).

3. Le soufre brûle avec le dioxygène de l'air selon l'équation de la réaction suivante :

$$S_{(s)}+O_{2(g)} \rightarrow SO_{2(g)}$$

- **3.1** Calculer le nombre d'oxydation de soufre dans SO₂.
- 3.2 Montrer que la réaction de combustion de soufre est une réaction d'oxydoréduction.
- 3.3 Préciser l'espèce oxydante

المادة: الكيمياء الشهادة: المتوسطة نموذج: رقم -٣-المدّة: ساعة واحدة

الهيئة الأكاديميّة المشتركة قسم: العلوم

أسس التصحيح (تراعي تعليق الدروس والتوصيف المعدّل للعام الدراسي 2016-2017 وحتى صدور المناهج المطوّرة)

	E	xercice 1 (7 pc	oints)		
	Polychlorure de Vinyle (PVC) Corrigé				
Partie de la question					Note
1.1	Atomes	Н	С	Cl	1 ½
	Nombre de	A-Z=1-1=0	12-6=6	35-17=18	
	neutrons				
	Configuration	\mathbf{K}^{1}	K^2L^4	$K^2L^8M^7$	
	Electronique			<u> </u>	1/2
	A partir du document-1				
	Le nombre des neutrons N= nombre de masse (A)-numéro atomique (Z) avec Z= le nombre de protons.				
1.2	atome de carbone :• C		totons.		1/2
	•				
1.3.1	i6 La charge électrique relative du nuage électronique du carbone				
	= le nombre d'électro				1/4
	électron	nis x ia charg	c ciccuique	relative d un	/4
	Dans l'atome de carbo	one, le nombre	d'électrons	= nombre de	
	protons =6.	,			1/2
	La charge électrique re		ge électroniqu	ue de l'atome	
1.0.0	$de carbone = 6 \times (1-)=$		271 / 2	•	1/
1.3.2	La valence représente le nombre d'électrons à gagner ou à				1/4
	perdre par un atome pour devenir stable d'où la valence de l'atome de carbone est 4.				1/2
2.1	La formule structurale		chlorure de v	inyle.	, 2
	H .H			·	1/2
	C = C				
		H	CI		
2.2	La formule moléculaire	de chlorure de	e vinyle est C	₂ H ₃ Cl	1/2
2.3	La liaison entre les deux atomes de carbone est une liaison			1/4	
	covalente double. Cha	cun des deux	carbones me	t en commun	
	deux électrons de valen				1/4
3.1	La formule structurale	semi-développ	ée de l'unité	répétitive est:	1/2
	-CH ₂ -CH-				
	CI				
3.2	L'equation de polyméri	isation			1
	$n (CH2 = CH) \longrightarrow (CH2 - CH) \xrightarrow{n}$				
	CI	Ċ1			
					<u> </u>

	Exercice 2 (7 points)		
	Raffinage du pétrole		
Partie de	Corrigé	Note	
la question			
1.1	C'est une distillation fractionnée qui permet de séparer les	1/2	
	constituants du pétrole brut en coupes.		
1.2	Le gaz est le constituant récupéré le premier et les fiouls lourds	1/4	
	représentent le constituant récupéré le dernier.	1/4	
2.1	Faux, la température d'ébullition d'un alcane augmente lorsque n	1	
	augmente. Alors, les points d'ébullition de ces deux alcanes sont		
	respectivement : -42°C pour le propane (n = 3) et 36°C pour le		
_	pentane $(n = 5)$		
2.2	Vrai. Pour l'heptane ($n = 7$), la température à laquelle l'heptane	1	
	passe de l'état liquide à l'état gazeux est 98°C (la température		
	d'ébullition). A une température ambiante de 25°C, l'heptane se		
	trouve à l'état liquide.		
3	Equation-bilan de la combustion complète du propane :	1/2	
	$C_3H_8+5O_2 \rightarrow 3CO_2+4H_2O$		
4.1	L'équation-bilan du craquage de l'heptane est la suivante :	1 1/4	
	$C_7H_{16} \rightarrow C_2H_4 + C_xH_y$		
	Or, dans une réaction chimique, le nombre d'atomes de chaque		
	élément (C et H) est conservé.		
	Ainsi : $x + 2 = 7$; d'où : $x = 7 - 2 = 5$		
	y + 4 = 16; d'où : $y = 16 - 4 = 12$		
	La formule moléculaire de l'hydrocarbure (A) est donc C_5H_{12} .	1/ 2	
4.2	CH ₃ —CH ₂ —CH ₂ —CH ₃	½ x3	
	pentane (ou n-pentane).		
	CH₃		
	 CH3—CH2—CH—CH3		
	2-méthylbutane		
	CH3		
	l CH3−Ç−CH3		
	CH ₃		
	2,2- diméthylpropane		
5	Ces composés ayant même formule moléculaire et différentes	3/4	
	formules structurales sont appelés isomères.		

	Exercice 3 (6 points)	
	Pollution par le dioxyde de soufre	
Partie de la question	Corrigé	Note
1.1	A choisir un effet nocif de la pluie acide : l'appauvrissement des milieux naturels ; la détérioration des bâtiments.	1/2
1.2	La source principale de dioxyde de soufre (SO ₂) est l'utilisation de combustibles fossiles soufrés (charbon, fioul, gazole).	1/2
1.3	Ce gaz est irritant pour l'appareil respiratoire.	1/2
2.1	La quantité de dioxyde de soufre produite en 1975 est 130,000 Gg.	1/2
	La quantité de dioxyde de soufre produite en 2000 est 105,000 Gg.	1/2
2.2	De 1975 à 2000, la quantité de dioxyde de soufre produite diminue. Ça nous conduit que la pollution de l'air causée par le dégagement de SO ₂ a diminué dans cette période.	1 1/2
3.1	le nombre d'oxydation de soufre dans SO ₂ est +IV	1/2
3.2	n.O 0 0 +IV -II $S_{(s)} + O_{2(g)} \longrightarrow SO_{2(g)}$ Le nombre d'oxydation de soufre augmente de (0) à +IV en passant de S à SO_2 . C'est une oxydation. Par contre, le nombre d'oxydation de l'oxygène diminue de (0) à -II en passant de O_2 à SO_2 . C'est une réduction. En conclusion, la réaction de combustion est une oxydoréduction.	1 1/2
3.3	L'espèce oxydante est O ₂ car il subit une réaction de réduction.	1/2