المادة: الرياضيات الشهادة: الثانوية العامة الفرع: العلوم العامة نموذج رقم -٣-المدّة: أربع ساعات

الهيئة الأكاديمية المشتركة قسم: الرياضيات

نموذج مسابقة (يراعي تعليق الدروس والتوصيف المعدّل للعام الدراسي ٢٠١٠-٢٠١٧ وحتى صدور المناهج المطوّرة)

ملاحظة: يُسمح باستعمال آلة حاسبة غير قابلة للبرمجة أو اختزان المعلومات أو رسم البيانات. يستطيع المرشح الإجابة بالترتيب الذي يناسبه (دون الالتزام بترتيب المسائل الوارد في المسابقة).

I- (2 points)

In the complex plane referred to the orthonormal system (O; \vec{u} ; \vec{v}) (C) is the circle with the center I(2;2) and radius 2;

In the next figure:

- (D) and (D') are two lines with respective equations : y = x and y = -x + 4;
- (D) intersects (C) at A and B;
- (D') intersects (C) at E and F.

Answer to each question by true or false and jutify:

- 1) The affix of B is: $Z_B = (\sqrt{2} + 2)e^{i(\frac{\pi}{4})}$
- 2) The affixes of the points I, F and B verify the relation: $Z_B = i (Z_F 2 2i)$.
- 3) Let S be the direct plane similitude that maps A onto B and I onto F, then the measure of the angle of SoS is $\frac{\pi}{4}$.
- 4) The set of the points M with affix z verifying the two conditions: |z 1| = |z i| and |z 2 2i| = 2 is the segment [AB].

II- (3 points)

In the space referred to the system (O; \vec{i} , \vec{j} ; \vec{k}). Consider the points A(2;1;0); B(0;1;3),

the line (d): $\begin{cases} x = 4t \\ y = 2 \\ z = -3t + 3 \end{cases}$ ($t \in IR$) and the plane (P) with equation : 3x - 4z = 0

- 1) a- Show that (AB) and (d) are skew.
 - **b-** Show that an equation of the plane (Q) containing (d) and parallel to (AB) is y 2 = 0.
 - **c-** Calculate the distance from A to (Q).
- 2) a- Show that (P) and (Q) are perpendicular and give the parametric equations of (Δ) . The intersection line of (P) and (Q).
 - b. Let S $(1;2;\frac{-3}{2})$ be a point in the space. Show that S is equidistant from (P) and (d).

١

III- (2 points)

An urn contains 4 black balls, 3 white balls and n red balls. (n>1)

Part A:

In this part, suppose that n = 2. We select randomly and simultaneously 3 balls from the urn.

- 1) Calculate the probability to select three balls having same color.
- 2) Let E be the event: "Amoung the three balls selected, we obtain exactly two balls with same color. Show that P(E) is equal to $\frac{55}{84}$.

Partie B:

We select randomly and simultaneously two balls from the (n + 7) balls. Denote by X the random variable that is equal to the number of red balls obtained.

Show that $P(X=2) = \frac{n(n-1)}{(n+6)(n+7)}$.

- 1) Determine the probability distribution of X.
- 2) Knowing that X = 0, prove that the probability to select two balls of different color is independent of n.
- 3) Calculate n so that the mathematic expected value E(x) is equal to 1.

IV-(3 points)

In the next figure, (AE) and (BL) are two perpendicular lines so that:

$$AB = AC = 1$$
, $AE = AD = DF = FG = 2$.

Let S be the direct similitude of the plane that maps A onto D and C onto F.

1) Determine the ratio and the angle of S.

2)

- **a-** G is a point so that $\overrightarrow{DG} = \overrightarrow{AE}$, prove that S(B) = G.
- $\mbox{\bf b-}$ Find S(E) .
- 3) Let H and K the respective midpoints of [BE] and [GL]. The lines (AH) and (DK) intersect at I. The lines (AH) and (DG) intersect at O.

۲

- **a-** Prove that S(H)=K and S(D)=O.
- **b-** Deduce that I is the center of S.

4) R is a rotation with center B and angle $\frac{\pi}{2}$. J is the point of intersection of (BG) and (AE).

a-What is the nature of SoR?

b- Prove that J is the center of *SoR*.

5) The complex plane is referred to the orthonormal system $(A; \overrightarrow{AB}, \overrightarrow{AC})$.

a- Give the complex form of S and deduce the affix of I.

b- Determine the affix of O then compare \overrightarrow{IO} and \overrightarrow{IA} .

c - M is a variable point so that $Z_M = x+2(1-x)i$ and M'= S(M).

Determine $Z_{M'}$, and deduce that M' moves on a line to determine its equation .

V- (3 points)

Consider a right angled triangle OBF at O with OF=3 and OB=4.

M is a variable point so that $\|\overrightarrow{MO} \wedge \overrightarrow{MB}\| = 2MF$.

Part A

1) Prove that M moves on a Hyperbol (H) with focus F, directrice (OB) and eccentricity e=2 Determine the focal axis of (H).

2) A is a point so that $\overrightarrow{OA} = \frac{1}{3}\overrightarrow{OF}$ and A' is the symmetric of F with respect to O.

 $\boldsymbol{a\text{-}}$ Prove that A and A' are the vertices of (H) .

 $\mbox{\sc b-}$ Deduce the center $\mbox{\sc I}$ of $\mbox{\sc (H)}$ and the second focus F'.

3) The circle with center I and radius 2 intersects (OB) at G and G' Prove that (IG) and (IG') are asymptotes to (H).

4) C is a point defined as $\overrightarrow{FC} = \frac{3}{2} \overrightarrow{OB}$.

a- Prove that C is a point on (H).

b- Calculate CF'-CF and deduce CF'.

c-Prove that (OC) is a bissector of $F\hat{C}F$.

d-Plot (H).

Part B

Consider the orthonormal system (I, \vec{i}, \vec{j}) with $\vec{i} = \frac{1}{3} \overrightarrow{OF}$ and $\vec{j} = \frac{1}{4} \overrightarrow{OB}$.

- 1) Write an equation of (H).
- 2) Write the equations of the asymptotes to (H).
- 3) (P) is a parbola with vertex V(0,2) and focus R(0,3).
 - **a-** Write an equation of (P).
 - **b-** Show that (P) is tangent to (H) at L(4:6) and another point to be determined.

VI- (7 points):

Let f be the function defined over IR as $f(x) = x - \ln(x^2 + 1)$ and (C) its representative curve

in the orthonormal sytem (O; $\stackrel{\rightarrow}{i}$; $\stackrel{\rightarrow}{j}$).

Part A

- 1) Calculate $\lim_{x \to -\infty} f(x)$ and $\lim_{x \to +\infty} f(x)$.
- 2) Show that the curve (C) has a parabolic branch in $+\infty$ and $-\infty$ parallel to the line (d) with equation y=x.
 - **a-** Show that $f'(x) = \frac{(x-1)^2}{x^2+1}$ and set up the table of variations of f.
 - **b-** Verify that (d) is tangent to(C) at O and determine a tangent in x=1.
 - **c** -Draw (C) and the line (d).
- 3) The function f has over IR an inverse function f^{-1} and the point of intersection of (C_f) and $(C_{f^{-1}})$ is on the first bisector.
 - **a-** Solve the inequality f(x) < x. Deduce the values of x so that $f^{-1}(x) > x$.
 - **b-**Determine the parabolic branch of f^{-1} .
 - **c-** Plot the curve of f^{-1} in the same system of that of f.
- 4) Calculate $\int f(x)dx$. Deduce the area of the domain bounded by the curves of f and f^{-1} and the lines with equations x = 4 and y = 4.

٤

- 5) Let g be the function defined over IR as $g(x) = \frac{4}{1+x^2}$, and let $h = \log$.
 - **a-** Show that h is defined over IR.
 - **b-**Calculate $\lim_{x \to -\infty} h(x)$ and $\lim_{x \to +\infty} h(x)$. Deduce an equation of an asymptote to the curve of h.
 - **c-** Calculate h '(1).

part B

Let
$$(u_n)$$
 the sequence defined as
$$\begin{cases} u_0 = 1 \\ u_{n+1} = u_n - \ln(u_n^2 + 1) \end{cases}$$
 with $n \in \mathbb{N}$.

- 1) a-Show that if $x \in [0;1]$ then $f(x) \in [0;1]$. b-Deduce that for all $n \in N$, $u_n \in [0;1]$.
- 2) Discuss the variations of the sequence (u_n) .
- 3) a- Show that the sequence (u_n) is convergent. b- Determine the limit of the sequence (U_n) .

المادة: الرياضيات الشهادة: الثانوية العامة الفرع: العلوم العامة نموذج رقم -٣-المدّة: أربع ساعات

الهيئة الأكاديميّة المشتركة قسم: الرياضيات

أسس التصحيح (تراعي تعليق الدروس والتوصيف المعدّل للعام الدراسي ٢٠١٠-٢٠١٧ وحتى صدور المناهج المطوّرة)

	Solution	
I-	Question I	4 pts
1)	False. The affix of B is : $Z_B = (\sqrt{2} + 2)e^{i(\frac{\pi}{4})}$	1
2)	False. The affixes of the points I, F and B satisfy the relation: $Z_{IB}=i\ Z_{IF}$. $Z_B=i\ (Z_F-2-2i)+2+2i$	1
3)	False . A measure of the angle of S o S is $\frac{\pi}{2}$	1
4)	False. The set of th points M with affix z verifying the two conditions: $ z - 1 = z - i $ and $ z - 2 - 2i = 2$ is $\{A,B\}$.	
	Question II	6pts
1-a	K(0;2;3) is a point on (d) and \overrightarrow{KA} . $(\overrightarrow{AB} \wedge \overrightarrow{V}_d) \neq 0$ Then (d) and (AB) are skew.	1
1-b	(d) \subset (Q) since $y = 2$; $\overrightarrow{AB} \perp \overrightarrow{n_Q}$ since $\overrightarrow{AB} \cdot \overrightarrow{n_Q} = 0$. $K(0; 2; 3) \in (d); \overrightarrow{KM} \cdot (\overrightarrow{V_d} \wedge \overrightarrow{AB}) = \begin{vmatrix} x & y - 2 & z - 3 \\ 4 & 0 & -3 \\ -2 & 0 & 3 \end{vmatrix} = 0; y - 2 = 0.$	1.5
1-с	$d(A;(Q)) = \frac{ 1-2 }{\sqrt{1}} = 1$	0.5
2-a	$\overrightarrow{N}_P \perp \overrightarrow{n}_Q$ because $\overrightarrow{N}_P \cdot \overrightarrow{n}_Q = 0$. (P) and (Q) are perpendicular $(P) \cap (Q) = (\Delta)$ and (P):3x -4z =0, (Q): Y -2 =0 and z = m therefore	1.5

	$x = \frac{4}{3}m$ and $y=2$ then (Δ): $\begin{cases} x = \frac{4}{3}m \\ y = 2 \\ z = m \end{cases}$	
2-b	$S(1;2;\frac{3}{2}) : K(0;2;3) \text{ then } \overrightarrow{SK} \wedge \overrightarrow{V}_d = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ -1 & 0 & \frac{3}{2} \\ 4 & 0 & -3 \end{vmatrix} = 3\overrightarrow{j}$ $d(S;(P)) = \frac{ 3-6 }{\sqrt{25}} = \frac{3}{5} \qquad d(S;(d)) = \frac{\ \overrightarrow{SK} \wedge \overrightarrow{V}_d\ }{\ \overrightarrow{V}_d\ } = \frac{ 3 }{\sqrt{25}} = \frac{3}{5}$	1.5
	Question III	4pts
A-1	$\frac{C_3^3 + C_4^3}{C_9^3} = \frac{5}{84}$	0.5
A-2	$P(E) = \frac{c_3^2 \cdot c_6^1}{c_9^3} + \frac{c_4^2 \cdot c_5^1}{c_9^3} + \frac{c_2^2 \cdot c_7^1}{c_9^3} = \frac{55}{84}$	1
B-1	$P(X=2) = \frac{c_n^2}{c_{n+7}^2} = \frac{n(n-1)}{(n+6)(n+7)}$	0,5
B-2	$P(X=0) = \frac{c_7^2}{c_{n+7}^2} = \frac{42}{(n+6)(n+7)} \text{et} P(X=1) = \frac{c_n^1 c_7^1}{c_{n+7}^2} = \frac{14n}{(n+6)(n+7)}$	1
B-3	P(two different colors $/X = 0$) = $\frac{C_4^1 \times C_3^1}{C_7^2} = \frac{4}{7}$.	•
B-4	$E(X) = \frac{2n^2 + 12n}{(n+6)(n+7)} = 1 \text{ then } n=7$	1

	Question IV	
	G E C C H	
1	S is the similitude that maps A onto D and C onto F. Ratio $\frac{DF}{AC} = 2$ and $(\overrightarrow{AC}, \overrightarrow{DF}) = \frac{\pi}{2} + 2k\pi$	1
2-a	$(\overrightarrow{AB}, \overrightarrow{DG}) = \frac{\pi}{2}; \frac{DG}{AB} = 2 \text{ then } S(B) = G.$	0.5
2-b	S(A)=D and S(C)=F but C midpoint of [AE] then S(C) is the midpoint of S([AE]) then S(E)=L	0.5
3-a	H midpoint of [BE] then S(H)=K midpoint of [GL]. Since S(A)=D then (AH) \perp (DK) and $\left(\overrightarrow{AD},\overrightarrow{DO}\right) = \frac{\pi}{2} + 2k\pi$; $\frac{DO}{DA} = tanD\hat{A}O = tanA\hat{B}E = 2$ then S(D)=O	1
3-b	$S(I) = S((AH) \cap (DK)) = (DK) \cap (OH) = I$	0.5
4-a	$SOR = S'(?, 2, \pi) = h(?, -2)$.	0.5
4-b	$B \xrightarrow{R} B \xrightarrow{S} G$ but $\overrightarrow{JG} = -2\overrightarrow{JB}$ then J center of SOR	0.5
5-a	z'=2iz-2 et $Z_I = \frac{-2}{5} - \frac{4i}{5}$	0.5
5-b	$Z_O = -2 - 4i \Rightarrow \overrightarrow{IO} = -4\overrightarrow{IA}$	0.5

5-с	$Z_{M'} = -6 + 4x + 2ix$ and M moves on a line with equation x-2y+6=0.		
	Question V	6pts	
	Part A		
1	$\ \overrightarrow{MO} \wedge \overrightarrow{MB}\ = 2A_{MOB} = MH \times OB \text{ with (MH)} \perp \text{(OB)}$	0.5	
	$MH \times 4=2MF \Rightarrow \frac{MF}{d(M,OB)} = 2$; then M' moves on a hyperbola with focus F,		
	directrix (OB), e=2 and focal axis (OF).		
2-a	AF=2AO, AF'=6=2A'O but Aand A'are on the focal axis. A and A 'are the vertices of (H).	0.5	
2-ь	I midpoint of [AA '] and F' symmetric of F with respect to I.	0.5	
3	$tanO\hat{I}G = \sqrt{3} = Slope\ of\ the\ asymptote\ then\ (IG)\ and\ (IG)\ are\ asymptotes\ to\ (H).$	0.5	
4-a	FC=6=2d(C,OB) then C is a point on (H).	0,5	
4-b	CF'-CF=AA'=4 then CF'=10	0.5	
4-с	$tanO\hat{C}F = \frac{1}{2} \ and \ tanF\hat{C}F' = \frac{4}{3}$	0,5	
	$tan(20\hat{C}F) = \frac{2\times\frac{1}{2}}{1-\frac{1}{4}} = \frac{4}{3} \text{ then } F\hat{C}F' = 20\hat{C}F, \text{ therefore (CO) bisector of } F\hat{C}F' .$		

4-d	B B C C C C C C C C C C C C C C C C C C	0.5
	Part B	
1	r^2 r^2	0.5
	$\frac{x^2}{4} - \frac{y^2}{12} = 1$	0.5
2	$y = x\sqrt{3}$ and $y = -x\sqrt{3}$	0.5
3-a	$x^2 = 4(y-2).$	0.5
3-b	L(4;6) is a common point of (P) and (H).	0.5
	Slope of the tangent at L to (H) = Slope of the tangent at L to (P) = 2	
	then (P) and (H) are tangent at L but (IV) is an axis of symmetry of (H) and (P) hence (H) and	
	(P) are tangent at L'(-4;6).	
	Question VI	Note
A-1	$\lim_{x \to +\infty} f(x) = +\infty \lim_{x \to -\infty} f(x) = -\infty$	0.5
A-2	$\lim_{x \to -\infty} \frac{f(x)}{x} = 1 \qquad \lim_{x \to +\infty} \frac{f(x)}{x} = 1 , \lim_{x \to -\infty} [f(x) - x] = -\infty \text{ and } \lim_{x \to +\infty} [f(x) - x] = -\infty \text{ then}$	0.5
	(C) has parabolic branch parallel to the line with equation $y = x$.	

A- 3.a	$f'(x) = \frac{(x-1)^2}{x^2 + 1}$ Table of variation X $f'(x)$ $f(x)$		0	+ + \infty + \infty	1
A3b	f(0) = 0 and $y = x$	s tangent at 0 and y=1 is a	tangent at x=1.		0.5

A- 3.c	y = x $y = x$ $y = 4$ $y = x$ $y = 4$ $y = x$ $y = 4$ $y = x$	1+0.5
A4a	$f(x) < x \ \text{then} \ x \in IR \setminus \{0\}, f^{-1}(x) > x \ \text{then} \ x \in IR \setminus \{0\}.$	0.5
A4b	Asymptotic direction parallel to the line $y = x$.	0.5
A4c	The curves of f and f^{-1} are symmetric with respect to the first bissector.	1
A5	$\int f(x)dx = \frac{x^2}{2} - x \ln(x^2 + 1) + 2x - 2 \arctan x + c$ $Area = 16 - 2 \left[\frac{x^2}{2} - x \ln(x^2 + 1) + 2x - 2 \arctan x \right]_0^4 = 8 \ln 17 + 4 \arctan 4 - 16$	2

A6a	$x \in D_g$, then $x \in R$ and $g(x) \in D_f$ therefore $D_h = R$. $x \in D_g$	0.5
A6b	$x \to \pm \infty$, $g(x) \to 0$ and $h(x) \to 0$; $y = 0$ HA	0.5
A6c	f is differentiable at g(x) and $h'(x) = f'(g(x) \times g'(x))$ hence $h'(1) = \frac{-2}{5}$.	1
B1a	If $x \in [0;1]$ then $f(x) \in [0;1]$	0.5
B1b	Mathematical induction.	1
B2	(U _n) strictly decreasing.	1
B3a	(U_n) strictly decreasing and having 0 as`lower bound then U_n is $\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	1
B3b	Limit = 0.	0.5