المادة: الرياضيات الشهادة: الثانوية العامة الفرع: الاجتماع والاقتصاد نموذج رقم - ١ -

المدّة: ساعتان

الهيئة الأكاديميّة المشتركة قسم: الرياضيات

نموذج مسابقة (يراعي تعليق الدروس والتوصيف المعدّل للعام الدراسي ٢٠١٠-٢٠١٧ وحتى صدور المناهج المطوّرة)

ارشادات عامة: - يسمح باستعمال آلة حاسبة غير قابلة للبرمجة او اختزان المعلومات او رسم البيانات. - يستطيع المرشح الإجابة بالترتيب الذي يناسبه دون الالتزام بترتيب المسائل الوارد في المسابقة.

I- (4 points)

The table below shows the VATon clothsy_i, in the last 6 years in a certain country

Year	2010	2011	2012	2013	2014	2015
Rank of year x _i	3	4	5	6	7	8
VATy _i	600	700	750	950	1100	1350
(in millions LL)						

- 1) Calculate the averages \bar{x} and \bar{y} of the two statistical variables x_i and y_i respectively.
- 2) Represent graphically the scatter plot as well as the center of gravity $G(\bar{x}; \bar{y})$ of the points $(x_i; y_i)$ in a rectangular system.
- 3) Write an equation of the regression line $D_{y/x}$ of y in terms of x and draw this line in the preceding system.
- 4) Suppose that the above pattern remains valid until the year 2020, Estimate the VAT on cloths in the year 2020.

II- (4 points)

A shop sells products (perfumes, hair gel and shampoo) of two kinds A and B.

10% of kind A are "perfumes", 30 % are "hair gel", and the rest are "shampoo"

50% of kind B are "perfumes", 20% are "hair gel", and the rest "shampoo"

A client chooses one product at random.

Consider the events:

A: "The product is of kind A"

B: "The product is of kind B"

H: "The product is a hair gel"

F: "The product is a perfume"

S: "The product is a shampoo"

Suppose that $P(A) = \frac{2}{3}$ and $P(B) = \frac{1}{3}$.

1)

- a- Calculate the following probabilities: $P(A \cap F)$, $P(A \cap H)$, $P(A \cap S)$, and P(F).
- b- Calculate the probability of the event: "The chosen product is of kind A, given that it is a perfume"
- 2) The prices of the products are given in the table below.

	Shampoo	Perfume	Hair Gel
A	LBP15 000	LBP80 000	LBP10 000
В	LBP10 000	LBP50 000	LBP5 000

Designate by X the random variable that is equal to the amount paid by the client.

- a- Determine the probability distribution of X.
- b- Calculate the mathematical expectation of X. Interpret the result.

III- (4 points)

In order to secure the future of their new-born, a bank proposes to parents the following offer:

For a deposit of 10 000 000 LL, an annual interest rate of 8 % is to be compounded annually, and to which a constant premium of 400 000 LL is to be added at the end of each year.

Designate by C_0 the initial capital ($C_0 = 10\ 000\ 000$), and by C_n the capital obtained at the end of the nth year.

1)

- a) Verify that C_1 =11 200 000 and calculate C_2 . Deduce that the sequence (C_n) is neither arithmetic nor geometric.
- b) Express C_{n+1} in terms of C_n .
- 2) Consider the sequence (U_n) defined by: $U_n = C_n + 5\,000\,000$.
 - a) Prove that (U_n) is a geometric sequence of common ratio 1.08 and whose first term is to be determined.
 - b) Express U_n in terms of n. Deduce C_n in terms of n.
 - c) How much shall be, after 18 years, the capital of a child whose parents accepted the offer of this bank?

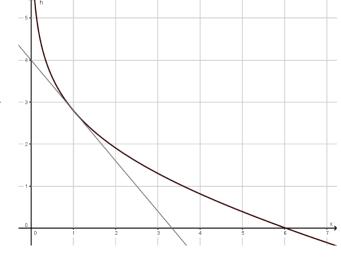
IV-(8points)

The adjacent curve (C) is the representative of a continuous and strictly decreasing function h that is defined on]0; $+\infty[by:$

h(x) = a + bx - ln(x) where a and b are two real numbers.

Indication: the line (d) of equation: y = -1.2x + 4 is tangent to the curve (C) at the point (1; 2.8)

- 1) Prove that a = 3 and b = -0.2
- 2)Set up the table of variations of h.



B)

Let g be the function defined over $[0; +\infty[$ by:

 $g(x) = 3(1-e^{-0.2x})$. Let (C_1) be the representative curve of g in an orthonormal system

- 1) Calculate $\lim_{x\to +\infty} g(x)$ and deduce an asymptote of (C).
- 2) Study the variation of g and setup the table of variations.
- 3) (C₁) cuts (C) at a point of abscissa α . verify that 2.93 $<\alpha$ < 2.95
- 4) Draw (C_1) and (C) on the same curve.

C)

In all what follows, let $\alpha = 2.94$

A factory produces a certain electronic articles. The demand, and the supply of this product in thousands of articles, are modeled by: $D(p) = 3(1-e^{-0.2p})$ and $S(p) = 3 - 0.2p - \ln p$ Where p is the unit price (price of one article) in thousands LL. $(0.2 \le p \le 5)$.

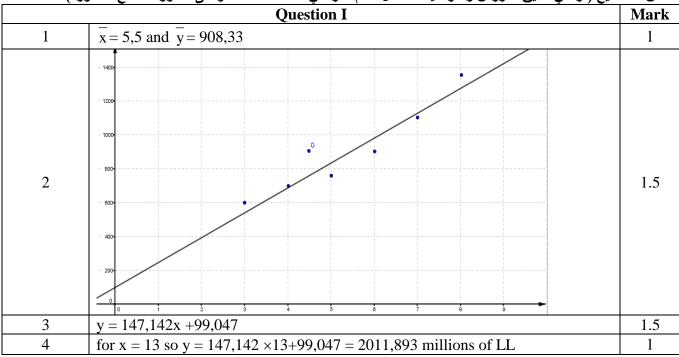
- 1) Calculate the supply corresponding to a unit price of 2 000 LL.
- 2) Calculate the unit price for a demand of 4000 items.
- 3) Give an economical interpretation for the value 2.94 of α . Calculate, in this case, the total revenue.
 - a) Determine E(p), the elasticity of the demand with respect to the price p.
 - b) Calculate E(2.94), and give an economical interpretation of the value thus obtained.

المادة: الرياضيات الشهادة: الثانوية العامة الفرع: الاجتماع والاقتصاد نموذج رقم - ١

المدّة: ساعتان

الهيئة الأكاديميّة المشتركة قسم: الرياضيات

أسس التصحيح (تراعي تعليق الدروس والتوصيف المعدّل للعام الدراسي ٢٠١٧-٢٠١ وحتى صدور المناهج المطوّرة)



	Question II							Mark		
1)	a-	$P(A \cap F) = \frac{2}{5}, \ P(A \cap H) = \frac{1}{5}, \ P(A \cap S) = \frac{2}{5},$ $P(F) = P(A \cap F) + P(B \cap F) = \frac{2}{5} + \frac{5}{30} = \frac{17}{30}$							0.5 0.5 0.5 0.5	
	b-	$P(F/A) = \frac{P(F \cap A)}{P(A)} = \frac{12}{17}$							0.5	
		$X = x_i$	5 000	10 000	15 000	50 000	80 000	Total		
2)	a-	$P(X = x_i)$		$\frac{3}{10}$	$\frac{2}{5}$	$\frac{1}{6}$	$\frac{1}{15}$	1		1
	b-	$E(X) = \sum P_i \times x_i = 23$. The average amount paid by the client is 23 000 LL.							0.5	
	Question III							Mark		
1)	1) $\begin{vmatrix} C_1 = 10\ 000\ 000 + 10\ 000\ 000 \times 0.08 + 400\ 000 = 11\ 200\ 000 \\ C_2 = 11\ 200\ 000 + 11\ 200\ 000 \times 0.08 + 400\ 000 = 12\ 496\ 000 \\ \frac{C_1}{C_0} \neq \frac{C_2}{C_1} \text{ and } C_1 - C_0 \neq C_2 - C_1 \end{vmatrix}$						0.25 0.25 0.25 0.25			
	b-	$C_{n+1} = C_n + 0.08$	$3C_n + 400$	000 = 1.0	$8C_{n} + 400$	000				0.5
2)	a-	$U_{n+1} = 1.08(C_n + 5000000) = 1.08U_n$; (U _n) is a geometric sequence of common ratio $r = 1.08$ and of first term $U_0 = 15000000$.						1		
2)	b-	$U_n = U_0 \times r^n = 15 \times 1000000 \times 1.08^n$ and $C_n = 15 \times 1000000 \times 1.08^n - 5000$						0.5 0.5		

	c-	$C_{18} = 15000000 \times 1.08^{18} - 5000 = 54940000$; the capital of a child whose parents accepted the offer of this bank, after 18 years, is 54 940 000 LL	0.5
--	----	---	-----

	Question IV	Mark
A)1	h(1) = 2.8 then $a + b = 2.8h'(1) = -1.2$ them $b - 1 = -1.2$ therefore $b = -0.2$ and $a = 3$	1
A) 2	$\lim_{x \to 0} h(x) = +\infty; \lim_{x \to +\infty} h(x) = -\infty$ $\begin{array}{c c} x & 0 & +\infty \\ h'(x) & - & \\ \hline h(x) & +\infty & \\ \hline \end{array}$	1
B)1	$\lim_{x\to +\infty} g(x) = 3$. y = 3 is an asymptote of (C).	0.5
B)2	$g'(x) = g(x) = 0.6 e^{-0.2x}$ but $x > 0$. then, g is strictly increasing over $]0$; $+\infty[$. $g(0) = 0$ $\frac{x \mid 0}{g'(x) \mid +\infty}$ $g(x) \mid 0$	1
B)3	Let $k(x) = g(x) - h(x) = 3(1 - e^{-0.2x}) - (3 - 0.2x - \ln x) = 0.2x + \ln x - e^{-0.2x}$ We have: $k(2.93) \times k(2.95) < 0$, then (C_1) cuts (C) at a point of abscissa α with $2.93 < \alpha < 2.95$	1
B)4		1

	$p = 2$, $S(2) = 3 - 0.2(2) - \ln 2 = 1.90685$	
C) 1	$p = 2$, $S(2) = 3 - 0.2(2) - \ln 2 = 1.90685$ C) 1 the supply corresponding to a price of 2 000 LL is 1907 articles.	
C) 2	D(p) = 1.5, or 3($1-e^{-0.2p}$) = 1.5 then p = $\frac{ln2}{0.2}$ = 3.47 the price for a demand of 1500 items is 3470 L.L	
C) 2	the price for a demand of 1500 items is 3470 L.L	1
C)3a	α = Equilibrium price = 1 000×2.94 = 2940 LL	0.5
C)3b	The total revenue = $p \times D(p) = 2940 \times 1330 = 3910200 \text{ L.L}$	0.5