Physics

Secondary Education
First year
General Coordinator
Moustapha Yaghi

The translation into English of this book was reviewed and corrected by faculty members at the American University of Beirut.
Secondary Education
First year

Michel Kraidy (Coordinator)
Ali Al-Arab
Elias Chalouhi
Sami Farah
Ali Haidar
Nassim Haidar
Mohammed Issa
Ibrahim Tannous
Technical Preparation: Technical Team ECRD
Illustrations: Graphics Team ECRD
Production & Distribution: Educational Company for Printing, Publishing and Distribution S.A.R.L.
Printing: Youssef Baydoun Printing Press

© ECRD 1998, Sin-El-Fil, Lebanon, P.O.Box: 55264
All Rights Reserved for ECRD
First Published September 1998
6th impression 2010
Together We Build Through Education!

The Center for Educational Research and Development (CERD) has embarked on an extensive workshop for assessing and developing the educational framework and curricula which have been placed into effect more than three years ago. With full realization of the fact that the educational cycle must continue normally through its components, and until the development process attains its aspired objectives, we are placing in the hands of students, teachers and directors of public schools, this corrected version of textbooks issued by CERD as part of the National Textbook Series.

This version is an interim stage incorporating the corrected typographical and linguistic errors discovered by CERD specialists as well as teachers and students through their daily dealings with the books. The process of assessment and development of the framework and curricula will take into consideration all the comments that have been made, or will be made, in this regard.

It is expected that once the curricula are developed and aligned with the general and specific objectives set for them, the textbooks will be realigned with the new curricular and framework requirements, including tying the content of a course to the number of teaching hours set for it during the school year, taking into consideration vertical alignment within the same course as well as the horizontal alignment with the rest of the courses.

I take this opportunity to invite all school administrators, teachers and students and all officials concerned in public and private schools alike, to promptly send their comments on these curricula and books as their contribution to enrichment of this momentous national process.

This workshop, which was launched under the kind sponsorship of His Excellency the Minister of Education and Higher Education in implementation of Decree No. 10227 embodying the educational curricula and their objectives, fits in with CERD’s proclaimed new motto “Together We Build Through Education”.

It is our earnest desire to see this national, all-inclusive workshop attracting the greatest amount of interest and participation to define the safest and soundest educational options that directly affect our children, as we vow to continually modernize education and develop its ways and means to keep abreast of modern developments and progress in science and technology.

Dr. Leila MALEEHA
President CERD
This is based on the requirements of the new Lebanese physics curriculum. It consists of four parts: electricity, waves, optics, and mechanics. Each part consists of a number of chapters, each of which contains the following:

- **Objectives** for teaching the chapter, listed at its beginning.

- **Experiments** to be performed by the student or the teacher. Their results lead to physical laws.

- **Questions** and **examples** inserted at various points in the text.

- A **summary** of the main ideas to be mastered by the student.

- **Test-your-knowledge** type questions that check the student's acquisition of the basic contents of each chapter.

- Open qualitative **questions** that may summons, through class discussions, the different intellectual abilities of the student.

- **Problems** that give the student the opportunity to apply the knowledge acquired from the chapter to concrete situations.

- Notes and **historical background** readings are introduced, whenever appropriate, to help the student understand that scientists of different cultural backgrounds have gradually developed science over the years.

We hope that this book is easy to use and effectively serves the purpose for which it was designed.
Table of Contents

Part I: Electricity

Chapter 1: Electrostatics
- 1.1. Electrostatic interaction
- 1.2. Electric aspect of matter
- 1.3. Charging objects
- 1.4. Insulators and conductors
- 1.5. Charging by contact
- 1.6. Metal-leaf electroscope
- 1.7. Charging by induction
- 1.8. Quantity of electric charge
- 1.9. Coulomb's law
 - Electrostatics in our life
 - Home experiments

Chapter 2: Potential difference
- 2.1. Notion of potential difference or voltage
- 2.2. Sign and units
- 2.3. Measurement of potential difference
- 2.4. Laws of potential difference
- 2.5. Reference potential
 - Instruments for measuring potential difference

Chapter 3: Electric current
- 3.1. Nature of electric current
- 3.2. Conventional direction of electric current
- 3.3. Magnitude of the electric current
- 3.4. Direct current and alternating current
 - Instruments to measure a current
- 3.5. Laws of current

Chapter 4: Resistors
- 4.1. Resistance
- 4.2. Ohm's law
- 4.3. Types of resistors
- 4.4. Measurement of the resistance
- 4.5. Resistance of a wire resistor
- 4.6. Joule's law
- 4.7. Grouping of resistors
- 4.8. Applications. Readings
Chapter 5 Generators and receivers

5.1. Generators 70
5.2. Poles of a generator 71
5.3. Current – voltage characteristic of a generator 72
5.4. Ohm’s law for a generator 73
5.5. Receivers 74
5.6. Current – voltage characteristic of a receiver 74
5.7. Batteries in opposition
 Batteries 77

Chapter 6 Electric circuits

6.1. Electric circuits 83
6.2. Drawing the diagram of an electric circuit 84
6.3. Setting up a circuit using a diagram 84
6.4. Solving an electric circuit 84
6.5. Strategy for solving electric circuits 86

Part II Waves

Chapter 7 Vibrations and waves

7.1. Vibrations 92
7.2. Characteristics of vibrations 92
7.3. Waves 94
7.4. Characteristics of a wave 95
7.5. Transverse and longitudinal waves 96
7.6. Electromagnetic waves
 Ripple tank 99

Chapter 8 Reflection and refraction of waves

8.1. Wavefronts 103
8.2. Reflection of waves on plane surfaces 104
8.3. Refraction of waves on plane surfaces 105
8.4. Index of refraction 105

Part III Optics

Chapter 9 Propagation of light

9.1. Rectilinear propagation of light 111
9.2. Light beams 112
9.3. Objects and images 113
Chapter 10 Reflection of light
10.1 Reflection
10.2 Laws of reflection
10.3 Reversibility of light
10.4 Plane mirrors
10.5 Image formed by a plane mirror
10.6 Field of vision of a mirror
 Home experiment

Chapter 11 Refraction of light
11.1. Refraction of light
11.2. Laws of refraction
11.3. Total internal reflection
11.4. Dispersion of white light
 Optical fibers

Chapter 12 Lenses
12.1. Spherical lenses
12.2. Geometry of lenses
12.3. Converging and diverging lenses
12.4. Ray tracing
12.5. Objects and images
12.6. Descartes' formula
12.7. Linear magnification

Chapter 13 The eye and the magnifier
13.1. Elements of the eye
13.2. Accommodation
13.3. Far and near points of vision
13.4. Myopic or shortsighted eyes
13.5. Presbyopic eye
13.6. Resolving power of the eye
13.7. Magnifier
13.8. Angular magnification of a magnifier
 Microscopes and telescopes
Part IV: Mechanics

Chapter 14: Description of motion
14.1 Rest and motion
14.2 Position vector
14.3 Speed and velocity
14.4 Acceleration
14.5 Air table

Chapter 15: Rectilinear motion
15.1 Uniform rectilinear motion
15.2 Equation of a uniform rectilinear motion
15.3 Uniformly accelerated rectilinear motion
15.4 Time equation of uniformly accelerated rectilinear motion

Chapter 16: Force and interaction
16.1 Effects of a force
16.2 Interaction
16.3 Representation of a force
16.4 Classification of forces
16.5 Forces acting on a system
16.6 Resultant of two forces

Chapter 17: Newton's laws
17.1 Newton's first law or the principle of inertia
17.2 Newton's second law or the fundamental principle of dynamics
17.3 Newton's third law or the principle of interaction
17.4 Newton's law of gravitational interaction
Galileo and Newton